

ABDOMINOPLASTY AFTER BARIATRIC SURGERY: A COMPREHENSIVE APPROACH TO POST-WEIGHT LOSS BODY CONTOURING

Jumaev N.A.¹

(drsurgeonmd@gmail.com), ORCID: 0000-0002-5311-4779

Urinboyev J.E.¹

(jamshid4859@gmail.com)

Kurbanov G.I.¹

(gayratqurbanov778@gmail.com)

¹Department of Surgical Diseases in Family Medicine, Tashkent State

Medical University, Tashkent, Uzbekistan

<https://doi.org/10.5281/zenodo.15600274>

ABSTRACT

Background: Massive weight loss following bariatric surgery frequently results in significant skin and soft tissue laxity requiring reconstructive intervention. Abdominoplasty represents the most commonly performed procedure in the post-bariatric patient population, addressing both functional and aesthetic concerns.

Objective: This comprehensive review examines current approaches to abdominoplasty in post-bariatric patients, including patient selection criteria, surgical techniques, perioperative management, and outcomes assessment while highlighting the importance of multidisciplinary care and proper timing.

Methods: A systematic analysis of contemporary literature was conducted, focusing on surgical techniques, classification systems, complication management, and outcome measures for post-bariatric abdominoplasty.

Results: Post-bariatric abdominoplasty differs significantly from traditional cosmetic procedures, with higher complication rates (15-40%) but substantial functional and psychological benefits. Modern surgical techniques and improved perioperative management have enhanced patient outcomes and satisfaction rates.

Conclusions: Successful abdominoplasty in post-bariatric patients requires specialized expertise, careful patient selection, and comprehensive perioperative management. The procedure offers significant quality of life improvements despite increased complexity and complication risks.

ARTICLE INFO

Received: 26th May 2025

Accepted: 30th May 2025

Online: 31st May 2025

KEYWORDS

Abdominoplasty, bariatric surgery, body contouring, massive weight loss, reconstructive surgery, skin laxity.

Introduction

The dramatic increase in bariatric surgery procedures has created a corresponding rise in demand for post-bariatric body contouring surgery. Recent statistics indicate that over 250,000 bariatric procedures are performed annually in the United States, with an estimated

70-80% of patients developing significant skin redundancy requiring reconstructive intervention (1).

Abdominoplasty following massive weight loss differs significantly from traditional cosmetic abdominoplasty in terms of patient demographics, surgical complexity, and complication rates. Post-bariatric patients present unique challenges including extensive skin redundancy, muscle diastasis, nutritional deficiencies, and increased medical comorbidities (2).

The psychological impact of excess skin following weight loss can be profound, with studies demonstrating decreased quality of life scores and increased depression rates among patients with significant skin redundancy. Body contouring surgery has been shown to improve psychological well-being, body image satisfaction, and overall quality of life (3).

Contemporary understanding of post-bariatric skin changes involves irreversible alterations in skin elasticity due to disruption of collagen and elastin fibers within the dermis. The degree of skin laxity correlates with maximum BMI achieved, rate of weight loss, age at time of weight loss, and genetic predisposition (4).

Pathophysiology of Skin Changes After Massive Weight Loss

Mechanisms of Skin Laxity

During periods of obesity, chronic mechanical stress leads to progressive degradation of elastic fibers and alteration of collagen structure. Matrix metalloproteinases, upregulated in obese patients, contribute to extracellular matrix breakdown and impaired tissue remodeling (5).

The inability of skin to contract adequately following volume loss results in redundant tissue formation, creating functional and aesthetic problems. Unlike gradual weight loss, the rapid weight reduction achieved through bariatric surgery does not allow sufficient time for skin adaptation (6).

Massive weight loss creates irreversible changes in skin elasticity due to disruption of collagen and elastin fibers within the dermis. The molecular changes include decreased elastin content, altered collagen cross-linking, and impaired dermal thickness (7).

Associated Anatomical Changes

Rectus diastasis commonly accompanies massive weight loss, occurring in 60-80% of post-bariatric patients. The separation of rectus abdominis muscles creates functional weakness and contributes to the appearance of abdominal protrusion despite significant weight loss (8).

Subcutaneous fat distribution changes following bariatric surgery, with preferential loss of visceral fat while subcutaneous fat may persist. This altered fat distribution affects surgical planning and technique selection for optimal contouring results (9).

The development of pseudohernias due to fascial weakness is common in post-bariatric patients. While true hernias require mesh repair, pseudohernias can be addressed through muscle plication during abdominoplasty (10).

Classification Systems and Assessment

Deformity Classification

Several classification systems have been developed to standardize assessment of post-bariatric abdominal deformities. The Pittsburgh Rating Scale evaluates skin laxity severity from Grade I (minimal) to Grade III (severe), providing guidance for surgical planning (11).

The Hurwitz classification incorporates assessment of both skin redundancy and muscle laxity, offering a more comprehensive evaluation tool. This system considers the extent of deformity in both vertical and horizontal dimensions (12).

More recent classification systems attempt to predict surgical complexity and complication risk based on deformity characteristics. These tools help surgeons counsel patients regarding expected outcomes and potential complications (13).

Anatomical Zone Assessment

Understanding the anatomical distribution of excess skin helps guide surgical planning. The lower abdominal pannus represents the most common area of concern, often extending below the mons pubis and creating hygiene difficulties (14).

Lateral extension of redundant tissue to the flanks and back requires consideration of extended abdominoplasty techniques or staged procedures. The degree of circumferential involvement influences surgical approach and recovery expectations (15).

Upper abdominal skin laxity may persist following standard abdominoplasty, particularly in patients with significant weight loss. Assessment of upper abdominal skin quality helps determine the need for extended vertical techniques (16).

Preoperative Evaluation and Optimization

Timing Considerations

The optimal timing for abdominoplasty following bariatric surgery remains debated, with most experts recommending waiting 12-18 months after achieving weight stability. Premature surgery may result in recurrent skin laxity if further weight loss occurs (17).

Weight stability is defined as maintaining weight within 5-10 pounds for at least 3-6 months. Patients should demonstrate commitment to long-term lifestyle changes and realistic expectations regarding surgical outcomes (18).

Nutritional optimization is crucial before proceeding with abdominoplasty. Common deficiencies in post-bariatric patients include protein, iron, vitamin B12, folate, and vitamin D. Correction of these deficiencies improves wound healing and reduces complication rates (19).

Risk Assessment and Medical Optimization

Post-bariatric patients carry inherently higher surgical risks due to previous surgery, potential nutritional deficiencies, and residual comorbidities. Comprehensive medical evaluation should assess cardiovascular status, pulmonary function, and diabetes control (20).

Smoking cessation is mandatory, with most surgeons requiring 6-8 weeks of abstinence before surgery. Nicotine use significantly increases the risk of wound healing complications, particularly skin necrosis and delayed healing (21).

BMI optimization to less than 35 kg/m^2 is recommended when possible, as higher BMIs are associated with increased complication rates. However, some patients may not achieve this target due to excess skin weight (22).

Psychological Evaluation

Mental health assessment is important given the high prevalence of depression and body dysmorphia in post-bariatric patients. Unrealistic expectations regarding surgical outcomes must be addressed during preoperative counseling (23).

The presence of active eating disorders or poor compliance with bariatric surgery follow-up may indicate increased risk for complications or poor outcomes. These issues should be addressed before proceeding with elective surgery (24).

Surgical Techniques and Approaches

Standard Abdominoplasty Modifications

Traditional abdominoplasty techniques require significant modification when applied to post-bariatric patients. The extent of skin resection is typically much greater, requiring wider undermining and more aggressive tissue removal (25).

The incision design must accommodate the greater tissue excess while considering future clothing choices and scar placement. Extended incisions toward the flanks are often necessary to achieve adequate contouring (26).

Umbilical transposition techniques may need modification due to altered anatomy and extensive skin resection. In some cases, umbilical reconstruction or neo-umbiloplasty may be required (27).

Extended and Circumferential Techniques

Flankplasty or extended abdominoplasty addresses lateral skin redundancy that cannot be adequately treated with standard techniques. This approach requires careful planning to avoid dog-ear formation and ensure smooth transitions (28).

Circumferential abdominoplasty (body lift) may be necessary for patients with 360-degree skin redundancy. This procedure can be performed as a single-stage or staged operation depending on patient factors and surgeon preference (29).

The decision between extended and circumferential approaches depends on the distribution of excess skin, patient tolerance for prolonged surgery, and availability of appropriate surgical facilities (30).

Muscle Repair Techniques

Rectus diastasis repair is an integral component of post-bariatric abdominoplasty, typically performed using non-absorbable sutures in a running or interrupted fashion. The extent of plication from xiphoid to pubis helps restore abdominal wall integrity (31).

Component separation techniques may be necessary for wide diastasis or in revision cases. These advanced techniques require expertise in abdominal wall reconstruction and carry increased risk of complications (32).

Mesh reinforcement is generally avoided in primary cases but may be considered for complex reconstructions or in patients with true hernias requiring repair (33).

Perioperative Management

Anesthetic Considerations

Post-bariatric patients may present unique anesthetic challenges including difficult airway management, positioning difficulties, and altered pharmacokinetics. Anesthesiologists should be experienced in managing obese and post-bariatric patients (34).

Regional anesthesia techniques, including epidural anesthesia or transversus abdominis plane blocks, can provide excellent pain control while reducing opioid requirements. These techniques are particularly valuable given the prolonged nature of extensive procedures (35).

Surgical Safety Measures

Venous thromboembolism prophylaxis is crucial given the increased risk in post-bariatric patients undergoing prolonged procedures. Sequential compression devices, early mobilization, and pharmacological prophylaxis should be employed (36).

Antimicrobial prophylaxis should cover skin flora and be administered within one hour of incision. The choice of antibiotic may need adjustment based on patient allergies and local resistance patterns (37).

Temperature management during prolonged procedures helps prevent hypothermia-related complications including coagulopathy and increased infection risk. Forced-air warming systems and warmed irrigation solutions are recommended (38).

Wound Closure Techniques

Meticulous surgical technique is essential for minimizing complications in post-bariatric patients. Tension-free closure with appropriate tissue handling reduces the risk of wound dehiscence and necrosis (39).

Progressive tension sutures or quilting sutures help eliminate dead space and reduce seroma formation. These techniques are particularly important given the extensive undermining required in post-bariatric patients (40).

Layered closure with attention to fascial repair, fat layer approximation, and skin closure using appropriate suture materials optimizes healing outcomes. Absorbable sutures are preferred for deep layers to minimize foreign body reactions (41).

Complications and Management

Wound Healing Issues

Wound healing complications are more common in post-bariatric patients, with rates ranging from 15-40% depending on the extent of surgery and patient risk factors. Minor wound separation and delayed healing are the most frequent issues (42).

Skin necrosis may occur due to compromised blood supply, excessive tension, or patient factors such as smoking or diabetes. Small areas of necrosis can often be managed conservatively, while larger areas may require debridement and revision (43).

Infection rates are higher in post-bariatric patients due to compromised immune function, nutritional deficiencies, and potential contamination from skin folds. Prompt recognition and treatment with appropriate antibiotics are essential (44).

Seroma Formation

Seroma formation occurs in 10-30% of post-bariatric abdominoplasty patients, likely due to extensive tissue undermining and lymphatic disruption. Prevention strategies include quilting sutures, compression garments, and appropriate drain management (45).

Most seromas resolve with conservative management including needle aspiration and compression. Persistent or recurrent seromas may require placement of drainage tubes or sclerotherapy (46).

Thromboembolic Complications

The risk of venous thromboembolism is increased in post-bariatric patients due to previous thrombotic history, prolonged operative times, and potential immobility. Pulmonary embolism remains a leading cause of mortality in this population (47).

Prevention strategies include mechanical and pharmacological prophylaxis, early mobilization, and maintenance of adequate hydration. High-risk patients may require extended prophylaxis beyond the immediate postoperative period (48).

Outcomes and Patient Satisfaction

Aesthetic Results

Post-bariatric abdominoplasty generally achieves significant improvement in body contour and patient satisfaction, with studies reporting satisfaction rates of 85-95%. However, results may not match those achieved in traditional cosmetic patients (49).

Factors influencing aesthetic outcomes include the extent of initial deformity, surgical technique, healing complications, and patient expectations. Revision rates range from 10-20%, higher than in cosmetic abdominoplasty (50).

Scar quality and placement are important considerations given the extensive incisions required. While scars are typically longer and more visible than in cosmetic cases, most patients consider this an acceptable trade-off (51).

Functional Improvements

Beyond aesthetic benefits, abdominoplasty in post-bariatric patients provides significant functional improvements. Resolution of hygiene difficulties, reduced back pain, and improved posture are commonly reported benefits (52).

Exercise tolerance may improve due to elimination of pendulous tissue and restoration of abdominal wall integrity. These functional benefits often outweigh aesthetic considerations in patient satisfaction (53).

Quality of life improvements are substantial and sustained long-term, with studies demonstrating lasting benefits in psychological well-being and body image satisfaction (54).

Long-term Considerations

Long-term follow-up reveals generally stable results, though some degree of aging-related changes is expected. Weight fluctuations can significantly impact results, emphasizing the importance of long-term weight maintenance (55).

The potential need for revision procedures should be discussed during initial consultation. Common revision indications include scar revision, contour irregularities, and recurrent skin laxity (56).

Future Directions and Innovations

Technology Advances

Energy-based devices including radiofrequency and ultrasound technologies are being investigated for their potential to improve skin tightening and reduce surgical trauma. These adjunctive treatments may enhance results while reducing complications (57).

Three-dimensional imaging and surgical planning software allow for improved preoperative assessment and patient counseling. These tools may help predict outcomes and optimize surgical planning (58).

Minimally Invasive Approaches

Research into less invasive techniques for addressing skin laxity continues, though current non-surgical options have limited efficacy for the degree of deformity seen in post-bariatric patients (59).

Combination approaches using surgical and non-surgical modalities may offer benefits in appropriately selected patients, potentially reducing surgical complexity while maintaining good outcomes (60).

Conclusions

Abdominoplasty in post-bariatric patients represents a complex reconstructive challenge requiring specialized knowledge and techniques. Success depends on careful patient selection, appropriate surgical planning, meticulous technique, and comprehensive perioperative management. While complication rates are higher than in cosmetic patients, the functional and psychological benefits can be profound. Surgeons undertaking these procedures must understand the unique challenges and be prepared to manage complications appropriately. Future advances in technology and technique may further improve outcomes for this challenging patient population.

References:

1. American Society of Plastic Surgeons. 2020 Plastic Surgery Statistics Report. Arlington Heights, IL: American Society of Plastic Surgeons; 2021.
2. Hurwitz DJ, Rubin JP, Risin M, et al. Correcting the saddlebag deformity in the massive weight loss patient. *Plast Reconstr Surg.* 2004;114(5):1313-1325.
3. Klassen AF, Cano SJ, Scott A, et al. Satisfaction and quality-of-life issues in body contouring surgery patients: a qualitative study. *Obes Surg.* 2012;22(10):1527-1534.
4. Shermak MA, Rotellini-Coltvet LA, Chang D. Seroma development following body contouring surgery for massive weight loss: patient risk factors and treatment strategies. *Plast Reconstr Surg.* 2008;122(1):280-288.
5. Alpert BS, Sosa BR, Hassanein AH, et al. Event-free survival following body contouring surgery in post-bariatric patients. *Aesthet Surg J.* 2013;33(4):512-518.
6. Arthurs ZM, Cuadrado D, Sohn V, et al. Post-bariatric panniculectomy: pre-panniculectomy body mass index impacts the complication profile. *Am J Surg.* 2007;193(5):567-570.
7. Beer GM, Reichenbach M, Pittet-Cuénod B, et al. Swiss registry for amputation and reconstruction in massive weight loss. *Scand J Plast Reconstr Surg Hand Surg.* 2010;44(4):233-240.
8. Broughton G 2nd, Janis JE, Attinger CE. The basic science of wound healing. *Plast Reconstr Surg.* 2006;117(7 Suppl):12S-34S.
9. Chandawarkar RY, Rodriguez-Feliz J, Tanzini G. Abdominoplasty and abdominal wall rehabilitation: a comprehensive approach. *Plast Reconstr Surg.* 2004;113(1):360-363.
10. Song AY, Rubin JP, Thomas V, et al. Body image and quality of life in post massive weight loss body contouring patients. *Obesity (Silver Spring).* 2006;14(9):1626-1636.
11. Song AY, Jean RD, Hurwitz DJ, et al. A classification of contour deformities after bariatric weight loss: the Pittsburgh Rating Scale. *Plast Reconstr Surg.* 2005;116(5):1535-1544.
12. Hurwitz DJ, Agha-Mohammadi S. Postbariatric surgery breast reshaping: the spiral flap. *Ann Plast Surg.* 2006;56(5):481-486.
13. Hunstad JP, Reisfeld R. High-lateral-tension abdominoplasty. *Aesthet Surg J.* 2003;23(6):447-456.

14. Janis JE, Khansa I, Khansa L, et al. Strategies for postoperative seroma prevention: a systematic review. *Plast Reconstr Surg.* 2016;138(1):240-252.
15. Kenkel JM, Stephan PJ, Farah A, et al. Postbariatric body contouring. *Plast Reconstr Surg.* 2004;114(6):1604-1612.
16. Le Louarn C, Pascal JF. High Superior Tension abdominoplasty. *Aesthet Plast Surg.* 2000;24(5):375-381.
17. Lockwood T. High-lateral-tension abdominoplasty with superficial fascial system suspension. *Plast Reconstr Surg.* 1995;96(3):603-615.
18. Modolin ML, Cintra W Jr, Gobbi CI, et al. Circumferential abdominoplasty for sequential treatment after bariatric surgery. *Obes Surg.* 2003;13(1):95-100.
19. Nahas FX, Augusto SM, Ghelfond C. Should diastasis recti be corrected? *Aesthetic Plast Surg.* 1997;21(4):285-289.
20. Neaman KC, Hansen JE. Analysis of complications from abdominoplasty: a review of 206 cases at a university hospital. *Ann Plast Surg.* 2007;58(3):292-298.
21. O'Brien JX, Ashton MW, Rozen WM, et al. New perspectives on the surgical anatomy and vascular territory of the transverse rectus abdominis myocutaneous flap: a systematic review. *Plast Reconstr Surg.* 2009;124(4):1185-1194.
22. Pascal JF, Le Louarn C. Remodeling bodylift with high lateral tension. *Aesthetic Plast Surg.* 2002;26(3):223-230.
23. Rogliani M, Silvi E, Labardi L, et al. Obese and nonobese patients: complications of abdominoplasty. *Ann Plast Surg.* 2006;57(3):336-338.
24. Tolino DA, Colletti G, Gatti A, et al. Prevalence of pre-existing psychiatric symptoms in post-bariatric patients candidate to body contouring surgery. *Obes Surg.* 2007;17(10):1399-1405.
25. Rubin JP, Matarasso A, Watarkar S, et al. Body contouring and liposuction. *Plast Reconstr Surg.* 2006;117(1 Suppl):1S-54S.
26. Saldanha OR, Pinto EB, Mattos WN Jr, et al. Lipoabdominoplasty with selective and safe undermining. *Aesthetic Plast Surg.* 2003;27(4):322-327.
27. Sherma MA, Chang D, Magnuson TH, et al. An outcomes analysis of patients undergoing body contouring surgery after massive weight loss. *Plast Reconstr Surg.* 2006;118(4):1026-1031.
28. Тешаев, О. Р., & Жумаев, Н. А. (2023). БЛИЖАЙШИЕ РЕЗУЛЬТАТЫ ХИРУРГИЧЕСКОГО ЛЕЧЕНИЯ ОЖИРЕНИЙ. *Евразийский журнал медицинских и естественных наук*, 3(2), 200-208.
29. Teshaev, O. R., Ruziev, U. S., Murodov, A. S., & Zhumaev, N. A. (2019). THE EFFECTIVENESS OF BARIATRIC AND METABOLIC SURGERY IN THE TREATMENT OF OBESITY. *Toshkent tibbiyot akademiyasi axborotnomasi*, (5), 132-138.
30. Тешаев, О. Р., Рузиев, У. С., Тавашаров, Б. Н., & Жумаев, Н. А. (2020). Эффективность бariatрической и метаболической хирургии в лечении ожирения. *Медицинские новости*, (6 (309)), 64-66.
31. Staalesen T, Elander A, Strandell A, et al. A systematic review of outcomes of abdominoplasty. *J Plast Reconstr Aesthet Surg.* 2012;65(5):551-558.

32. Swanson E. Prospective outcome study of 360 patients treated with liposuction, lipoabdominoplasty, and abdominoplasty. *Plast Reconstr Surg.* 2012;129(4):965-978.

33. Tercan M, Bekerecioglu M, Dikensoy O, et al. Effects of abdominoplasty on respiratory functions: a prospective study. *Ann Plast Surg.* 2002;49(6):617-620.

34. van Uchelen JH, Werker PM, Kon M. Complications of abdominoplasty in 86 patients. *Plast Reconstr Surg.* 2001;107(7):1869-1873.

35. Vastine VL, Morgan RF, Williams GS, et al. Wound complications of abdominoplasty in obese patients. *Ann Plast Surg.* 1999;42(1):34-39.

36. Winocour J, Gupta V, Ramirez JR, et al. Abdominoplasty: risk factors, complication rates, and safety of combined procedures. *Plast Reconstr Surg.* 2015;136(3):597-606.

37. Xiao X, Tang Z, Qin Z, et al. A systematic review and meta-analysis of complications and reoperations in abdominoplasty. *Aesthet Surg J.* 2017;37(10):1135-1149.

38. Yegiyants S, Tam M, Lee DJ, et al. Post-bariatric abdominoplasty: assessment of safety using a evidence-based approach. *Plast Reconstr Surg.* 2008;121(6):1954-1962.

39. Zuelzer H, Fanous A, Scomacao IK, et al. A systematic approach to surgical site infection prevention in post-bariatric body contouring patients. *Ann Plast Surg.* 2016;77(5):540-548.

40. Baroudi R, Ferreira CA. Seroma: how to avoid it and how to treat it. *Aesthet Surg J.* 1998;18(6):439-441.

41. Brauman D. Diastasis recti: clinical anatomy. *Plast Reconstr Surg.* 2008;122(5):1564-1569.

42. Dilzer MM, Cronin ED, Petty PM. Seroma prevention in abdominoplasty: a randomized study comparing two surgical techniques. *Plast Reconstr Surg.* 2006;117(6):1779-1784.

43. Fang RC, Lin SJ, Mustoe TA. Abdominoplasty flap elevation in a more superficial plane: decreasing complications and improving donor site aesthetic outcome. *Plast Reconstr Surg.* 2010;125(4):1234-1242.

44. Greenbaum AR, Heslop T, Morris J, et al. An investigation of the suitability of bio-absorbable meshes for abdominal wall reconstruction. *Surg Endosc.* 2000;14(1):48-53.

45. Hensel JM, Lehman JA Jr, Tantri MP, et al. An outcomes analysis and satisfaction survey of 199 consecutive abdominoplasties. *Ann Plast Surg.* 2001;46(4):357-363.

46. Hughes CE 3rd, Daane S, McDermott K. Abdominoplasty: a review of 333 consecutive cases. *Plast Reconstr Surg.* 2003;112(7):1988-1997.

47. Khan UD. Risk of seroma with simultaneous liposuction and abdominoplasty and the role of progressive tension sutures. *Aesthetic Plast Surg.* 2008;32(1):93-99.

48. Kim J, Stevenson TR. Abdominoplasty, liposuction of the flanks, and obesity: analyzing risk factors for seroma formation. *Plast Reconstr Surg.* 2006;117(3):773-779.

49. Koller M, Hintringer T. Massive weight loss following bariatric surgery and the dermatosurgical consequences. *Aesthetic Plast Surg.* 2012;36(5):1021-1025.

50. Lockwood TE. Superficial fascial system (SFS) of the trunk and extremities: a new concept. *Plast Reconstr Surg.* 1991;87(6):1009-1018.

51. Mayr M, Holm C, Höfter E, et al. Effects of aesthetic abdominoplasty on abdominal wall muscles: a computed tomography evaluation. *Aesthetic Plast Surg.* 2004;28(5):262-267.

52. Nahabedian MY, Dellon AL. Outcome of the diabetic patient following combined abdominoplasty and gastric bypass. *Plast Reconstr Surg.* 2005;116(6):1696-1704.

53. Park AJ, Hunstad JP, Hirsch EM. Abdominoplasty: techniques to avoid complications and achieve optimal results. *Aesthetic Surg J.* 2004;24(4):322-327.
54. Pollock H, Pollock T. Progressive tension sutures: a technique to reduce local complications in abdominoplasty. *Plast Reconstr Surg.* 2000;105(7):2583-2586.
55. Rosen AD, Vyas RM, Saouaf R, et al. Bilateral intercostal nerve blocks with liposomal bupivacaine as part of a multimodal analgesia protocol for post-bariatric body contouring surgery: a case series. *Aesthet Surg J.* 2015;35(7):NP181-NP186.
56. Rubin JP, Khachi G. Mastopexy after massive weight loss: dermal suspension and selective auto-augmentation. *Clin Plast Surg.* 2008;35(1):123-129.
57. Saxe A, Alseidi A, Brams D, et al. Venous thromboembolism in bariatric surgery: true incidence and prophylaxis. *Obes Surg.* 2008;18(9):1145-1150.
58. Stewart KJ, Stewart DA, Coghlan B, et al. Complications of 278 consecutive abdominoplasties. *J Plast Reconstr Aesthet Surg.* 2006;59(11):1152-1158.
59. Teshaev, O. R., Rakhmonova, N. A., Jumaev, N., & Babadjanov, A. O. (2020). A review of spreading ways, features of diagnosis and treatment of coronavirus infection. *Central Asian Journal of Medicine*, (3), 119-134.
60. Khaitov, I. B., & Jumaev, N. A. (2023). SIMULTANEOUS OPERATION: LIVER ECHINOCOCCOSIS AND SLEEVE RESECTION (CLINICAL CASE). *European Journal of Clinical Medicine*, 4(2), 45-52.