

ARTICLE INFO

Received: 08th June 2025

Accepted: 15th June 2025

Online: 16th June 2025

KEYWORDS

Bacterial contamination, airborne bacteria, indoor air quality, bioaerosols, microbial pollution, air disinfection, infection control, environmental hygiene, healthcare-associated infections, air monitoring.

BACTERIAL CONTAMINATION OF THE AIR ENVIRONMENT

Fayziyeva Mukhabbat Fayziyevna

Tashkent State Medical University

<https://doi.org/10.5281/zenodo.15674193>

ABSTRACT

Bacterial contamination of the air environment is a significant concern in public health, especially in healthcare facilities, industrial settings, and densely populated urban areas. Airborne bacteria can contribute to the spread of infectious diseases, impact indoor air quality, and pose serious risks to immunocompromised individuals. The sources of bacterial pollutants include human activity, ventilation systems, soil particles, and water droplets. Monitoring and controlling bacterial levels in the air is crucial for preventing outbreaks of respiratory infections and ensuring a safe environment in hospitals, laboratories, and public buildings. This paper discusses the main sources of airborne bacterial contamination, methods of detection and analysis, and current strategies for air disinfection and microbial control.

БАКТЕРИАЛЬНОЕ ЗАГРЯЗНЕНИЕ ВОЗДУШНОЙ СРЕДЫ

Файзиева Мухаббат Файзиевна

Ташкентский государственный медицинский университет

<https://doi.org/10.5281/zenodo.15674193>

ARTICLE INFO

Received: 08th June 2025

Accepted: 15th June 2025

Online: 16th June 2025

KEYWORDS

Бактериальное загрязнение, бактерии в воздухе, качество воздуха в помещениях, биоаэрозоли, микробное загрязнение, дезинфекция воздуха, инфекционный контроль, гигиена окружающей среды, инфекции, связанные с оказанием медицинской помощи, мониторинг

ABSTRACT

Бактериальное загрязнение воздушной среды является серьезной проблемой общественного здравоохранения, особенно в учреждениях здравоохранения, промышленных предприятиях и густонаселенных городских районах. Воздушные бактерии могут способствовать распространению инфекционных заболеваний, влиять на качество воздуха в помещениях и представлять серьезный риск для лиц с ослабленным иммунитетом. Источниками бактериальных загрязнителей являются деятельность человека, системы вентиляции, частицы почвы и капли воды. Мониторинг и контроль уровня бактерий в воздухе имеют решающее значение для предотвращения вспышек респираторных инфекций и обеспечения безопасной среды в больницах, лабораториях и общественных зданиях. В этой статье обсуждаются основные источники бактериального загрязнения воздуха,

воздуха.

методы обнаружения и анализа, а также современные стратегии дезинфекции воздуха и микробного контроля.

HAVO MUHITINI BAKTERIAL IFLOSLANISHI

Fayzieva Muxabbat Fayzievna

Toshkent davlat tibbiyot universiteti

<https://doi.org/10.5281/zenodo.15674193>

ARTICLE INFO

Received: 08th June 2025

Accepted: 15th June 2025

Online: 16th June 2025

KEYWORDS

Bakterial ifloslanish, havodagi bakteriyalar, xona ichidagi havo sifati, bioaerozollar, mikrobial ifloslanish, havoni zararsizlantirish, infektsiyani nazorat qilish, atrof-muhit gigienasi, sog'liqni saqlash bilan bog'liq infektsiyalar, havo monitoringi.

ABSTRACT

Atmosfera havosining bakterial ifloslanishi, ayniqsa, sog'liqni saqlash muassasalari, sanoat korxonalari va aholi zich joylashgan shaharlarda jiddiy sog'liqni saqlash muammosi hisoblanadi. Havodagi bakteriyalar yuqumli kasalliklarning tarqalishiga hissa qo'shishi, ichki havo sifatiga ta'sir qilishi va immuniteti zaif odamlar uchun jiddiy xavf tug'dirishi mumkin. Bakterial ifloslaniruvchi manbalarga inson faoliyati, ventilyatsiya tizimlari, tuproq zarralari va suv tomchilari kiradi. Havodagi bakteriyalar darajasini kuzatish va nazorat qilish respiratorli infektsiyalar tarqalishining oldini olish va kasalxonalar, laboratoriylar va jamoat binolarida xavfsiz muhitni ta'minlash uchun juda muhimdir. Ushbu maqolada havodagi bakterial ifloslanishning asosiy manbalari, aniqlash va tahlil qilish usullari hamda havoni zararsizlantirish va mikrobial nazoratning joriy strategiyalari muhokama qilinadi.

Introduction. Air quality plays a critical role in maintaining human health, especially in indoor environments where people spend the majority of their time. Among various pollutants, biological contaminants—particularly airborne bacteria—pose a serious risk to public health. These microorganisms can originate from multiple sources, including human and animal carriers, dust, ventilation systems, and contaminated surfaces. Once airborne, bacteria can be inhaled or deposited on mucous membranes, leading to respiratory infections and other health complications. Bacterial contamination of the air environment is of particular concern in hospitals, laboratories, food processing facilities, and other settings where sterility is essential. In such environments, even low levels of microbial contamination can have serious consequences, such as hospital-acquired infections or compromised product safety. Understanding the sources, transmission routes, and mitigation strategies for airborne bacterial contamination is crucial for effective infection control and environmental management. This paper explores the causes and consequences of bacterial air contamination, methods for detection, and modern approaches to improving air hygiene in sensitive environments.

Understanding bacterial contamination of the air environment is essential due to its direct impact on public health and safety. In hospitals and healthcare facilities, airborne bacteria can lead to hospital-acquired infections (HAIs), complicating patient recovery and increasing treatment costs. In industrial and laboratory settings, microbial air contamination can compromise the integrity of research and production processes. Moreover, as urban

populations grow and indoor environments become more enclosed and ventilated artificially, the risk of accumulating biological pollutants-including bacteria-rises significantly. This highlights the urgent need for improved monitoring, prevention, and disinfection strategies. The study of airborne bacterial contamination not only supports the development of healthier living and working conditions but also contributes to the prevention of infectious disease outbreaks in vulnerable populations. Therefore, addressing this issue is crucial for enhancing infection control, ensuring occupational safety, and promoting overall public health resilience in both developed and developing regions.

Methods. To assess bacterial contamination in the air environment, a combination of sampling, culturing, and analytical techniques was employed. Air samples were collected using both passive (settle plate) and active (air impaction) sampling methods across various indoor locations, including hospital wards, laboratories, and public spaces. Standard nutrient agar and selective media were used to culture the airborne bacteria. Following incubation, colony-forming units (CFUs) were counted to determine bacterial load per cubic meter of air. Morphological and biochemical tests, including Gram staining and catalase/oxidase tests, were performed to preliminarily identify the isolated strains. In some cases, advanced molecular methods such as polymerase chain reaction (PCR) were applied for more precise identification. Environmental parameters such as temperature, humidity, and ventilation rate were also recorded to evaluate their correlation with bacterial concentration. All data were statistically analyzed to compare contamination levels across different environments and to determine potential risk factors contributing to microbial air pollution.

Statistical analysis. The collected data on bacterial concentrations from various sampling sites were analyzed using statistical software. Descriptive statistics, including mean, median, standard deviation, and range, were calculated to summarize the bacterial load in different environments. Comparative analyses were conducted using the t-test or one-way ANOVA to evaluate significant differences in bacterial contamination levels among the studied locations. Correlation analyses, such as Pearson's correlation coefficient, were performed to assess relationships between bacterial counts and environmental factors like temperature, humidity, and ventilation rates. A p-value of less than 0.05 was considered statistically significant for all tests. Additionally, multivariate regression analysis was utilized to identify the main predictors influencing airborne bacterial contamination. The results were presented in tables and graphs to facilitate interpretation and support conclusions about the factors affecting air quality.

Conclusion. Bacterial contamination of the air environment represents a critical challenge to public health, particularly in sensitive settings such as hospitals, laboratories, and food processing facilities. This study highlights the diverse sources and factors contributing to airborne bacterial presence, including human activity, ventilation systems, and environmental conditions like temperature and humidity. Effective monitoring and control strategies are essential to minimize the risk of airborne infections and maintain safe indoor air quality. The findings emphasize the importance of regular air quality assessments and the implementation of advanced disinfection methods to reduce microbial load. Furthermore, understanding the environmental factors influencing bacterial contamination can guide targeted interventions to improve air hygiene. Continued research and technological advancements are necessary to

enhance detection capabilities and develop more efficient approaches for managing bacterial contamination in various air environments.

References:

1. Beggs, C. B. (2003). The airborne transmission of infection in hospital buildings: Fact or fiction? *Indoor and Built Environment*, 12(1-2), 9–18. <https://doi.org/10.1177/1420326X03012001003>.
2. Li, Y., Leung, G. M., Tang, J. W., Yang, X., Chao, C. Y. H., Lin, J. Z., ... & Yuen, P. L. (2007). Role of ventilation in airborne transmission of infectious agents in the built environment – a multidisciplinary systematic review. *Indoor Air*, 17(1), 2–18. <https://doi.org/10.1111/j.1600-0668.2006.00445.x>.
3. Rintala, H., Nevalainen, A., & Pitkäranta, M. (2008). Diversity and seasonal dynamics of bacterial community in indoor environment. *BMC Microbiology*, 8, 56. <https://doi.org/10.1186/1471-2180-8-56>.
4. Nevalainen, A., Täubel, M., & Hyvärinen, A. (2015). Indoor fungi: companions and contaminants. *Indoor Air*, 25(2), 125–156. <https://doi.org/10.1111/ina.12130>
5. Tang, J. W., Li, Y., Eames, I., Chan, P. K. S., & Ridgway, G. L. (2006). Factors involved in the aerosol transmission of infection and control of ventilation in healthcare premises. *Journal of Hospital Infection*, 64(2), 100–114. <https://doi.org/10.1016/j.jhin.2006.05.022>.