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 Difference schemes of the finite difference method of high-

order accuracy for the sixth-order Sobolev-type equation 

are constructed and investigated. In particular, the first 

boundary value problem for the wave equation of a 

compressible stratified rotating fluid is considered. First, 

approximation is performed only in spatial variables by 

the finite difference method, and the resulting system of 

high-dimensional ordinary differential equations is also 

approximated by this method. Using the method of energy 

inequalities, a priori estimates were obtained and, on their 

basis, theorems on the stability and convergence of the 

constructed difference schemes were proven; accuracy 

estimates were obtained for sufficient smoothness of the 

solution to the original initial boundary value problem. An 

algorithm for implementing difference schemes is 

proposed. 
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1. Introduction. In mathematical modeling of applied problems in complex many-sided 

fields, such as geophysics, oceanology, semiconductor physics, atmospheric physics, physics of 

magnetically ordered structures, associated with the wave propagation in media with a strong 

dispersion, non-classical high-order partial differential equations, called Sobolev-type 

equations, arise [ 1]–[3]. It is not always possible to find exact solutions to these equations, so 

they are mainly solved by numerical methods. 

In [3]-[6], based on analytical methods, the problems of global and local solvability of 

initial boundary value problems for linear and nonlinear equations unsolved for the highest 

time derivative were considered. The solvability of such problems is also considered in [7]–

[11], where theoretical results were obtained based on phase space methods developed by G.A. 

Sviridyuk. 

Recently, numerous studies have been published on numerical solutions of initial 

boundary value problems for linear and nonlinear equations of Sobolev-type. In particular, in 

[2], [3], such equations were reduced to two equations using a certain function (one contains 

differentiation in time, the other - only in space) and then these equations were solved by the 

finite difference method on quasi-uniform grids. In [12], a mathematical model of ion-acoustic 

waves in a plasma in an external magnetic field and issues of unique solvability of the Cauchy-
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Dirichlet problem were considered. A similar study of an optimal control problem for a given 

mathematical model was considered in [13], where an algorithm for a numerical solution was 

developed based on the modified Galerkin method and the Ritz method. In [14], a software 

package was proposed for the numerical solution to the Boussinesq-Love equation. In [15]-

[17], similar problems were solved by the finite element method. 

This study is devoted to the construction of difference schemes of high accuracy for the 

first initial boundary value problem for the equation of waves of a compressible stratified 

rotating fluid. The construction of difference schemes is performed based on the finite 

difference method for both variables. First, only spatial variables are approximated, resulting 

in a system of high-dimensional ordinary differential equations. Below, difference schemes of 

various orders of accuracy are considered for this system. Using the method of energy 

inequalities, A.A. Samarskii obtained various a priori estimates and, based on these estimates, 

the convergence and accuracy of difference schemes were proven with sufficient smoothness 

of the solution to the original initial boundary value problem. Algorithms for implementing 

difference schemes are proposed. 

2. Statement of the problem. In domain 

 1 2 3( , ) : ( , , ) [0 , 1,2,3], [0, ]TQ х t x x x x x l t T         
 

we consider the initial boundary value problem for the equation of dynamics of 

compressible stratified rotating fluid in the following form [18]: 
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0  is the square of the Väisälä-

Brent frequency, 
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 is the velocity of motion, c  is the speed of sound, 
, 

 are some 

constants, (0, ]TQ T ,  
 0 , 1,2,3x l      

 [1]. Here, 0c  , and for c   

equation (1) is the equation of gravitational-gyroscopic waves, which is a mathematical model 

of linear internal waves in rotating ocean [4]. 

3. Discretization in space. Below, equation (1) is considered in the following form:  

4 2
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  ,                                                        (4) 

where 
2 2 2 2

0 3 ( )K c c      , 
2 2 2 2 2 2 2 2

1 0 2 3( / )K c c x         . 
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Let us construct subspace HHh   that approximates Hilbert space H  with the 

corresponding scalar product and norm. We introduce into   grid (uniform in each direction) 

321
hhhh  

, where  
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constant M  does not depend on 321 ,, hhh . Here ),,( 332211 hihihivv  ,  

  1332211332211 /),,)1((),,(
1

hhihihivhihihivvx 
,   
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. 

Approximating operators 0K  and 1K   by difference relations on the indicated grids, we 

obtain the Cauchy problem for a system of ordinary fourth-order differential equations: 
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Operators B  and A  approximate operators 0K  and 1K   with the second order, 

respectively, i.e. 

2 2 2 2

1 2 3( ),O h h h h h  
, D E . 
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4.  Discretization in time. We introduce uniform grid 
 0,...;1,0,   nntn  on 

segment ],0[ T . Let 
y

 approximate hu . In [19], for problem (5) with operators (6), a difference 

scheme of the fourth-order approximation was constructed on this grid: 

,t t t t t t nDy By Ay t     
,                                             (7) 
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5.  Convergence of the scheme. The following assertion holds.  

Theorem 1 [19]. Let 0D D   , 0B B   , 0A A    and the following stability 

condition be satisfied  

    
4( / 4)D A

.                                                             (10) 

 Then the solution to the difference scheme (7), (8) with operators (9) converges to a 

smooth solution of the original problem (5) and the following accuracy estimate holds: 
4( ) ( ) ( ),n n ny t u t O t    

. 

 Therefore, based on this theorem, we obtain the following result. 

 Theorem 2. Let 0D D   , 0B B   , 0A A    and stability condition (10) be 

satisfied. Then, the solution to the difference scheme (7), (8) with operators (9) converges to a 

smooth solution of the original problem (1)-(3) or (4), (2), (3) and the following accuracy 

estimate holds for its solution: 
2 4( , ) ( , ) ( ), ,i n i n i h ny x t u x t O h x t       

.     

 6. Schemes with weights. Based on the difference scheme (7), (8) with operators (9), 

we consider a family of difference schemes with weights 

3 41 2 ( , )( , ) ,t t t t t t nDy By Ay t
  

    
.                                           (11) 

Here 
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     , 
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3 3 4 4(1 )y y y y
     

 

     , 

where 1 2 3 4, , ,     are some constants of the scheme with weights, the presence of which 

allows us to select various explicit and implicit schemes and adjust their accuracy in space. 
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 Let us study the stability and convergence of scheme (11) with initial conditions (8). To 

do this, we reduce (11) to canonical form [20]. The following transformation on scheme (11) is 

performed:  
2 2 2 2 4 1

1 1 2 1 3( ) [4 (1 ) 2 ]n nD B y D B B A y                
 

2 2 2 4

2 1 2 1 3 4[6 2 (1 ) (1 ) ] nD B B B A y                  
 

2 2 4 1 2 2 4

2 1 2 4 2[4 2 (1 ) ] ( )n nD B B A y D B y                   
.        (12) 

Let 
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 Now, similarly to [20], we write scheme (12) in the following canonical form:   
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where 
2 4( / 4)(1 4 ) ( / 8)Q D B A      

,  
2 4(1 4 )R B A     

. 

 According to Theorem 2 from [20, p. 276], there is an a priori estimate based on the 

initial data ( 0  ) 
1n nY Y

 


,                                                         (16) 

if the following conditions are met: 

Re 0M  ,  0  ,  
4 0R Q   

,   
16 0Q 

.                        (17) 
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Here 
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 Let us check the fulfillment of conditions (17). The first condition Re 0M   is satisfied 

since 0M  . The second condition 0   is satisfied since 0A . Condition 
4 0R Q   

will be satisfied if   
4 24 (1 2 ) 2 (1 4 )D A B      

,                                                    (19) 

and, finally, condition 
16 0Q 

 will be satisfied if 
4 216 (1 2 ) 4 (1 4 )D A B      

.                                                 (20) 

Conditions (19) and (20) will be satisfied if 1/ 2  , 1/ 4  , 
4( / 4)D A

 or  

1/ 2  ,   1/ 4  ,  
4( / 4)D A

,                                               (21) 

which are conditions for the stability of scheme (11), (8). 

 Thus, the following theorem is proven. 

 Theorem 3. Let 0D D   , 0B B   , 0A A    and condition (21) be satisfied. 

Then, to solve the difference scheme (11), (8), an a priori estimate based on the initial data (16) 

is true. 

 To prove the stability on the right-hand side of scheme (11), (8), we present it in the 

form of an equivalent two-layer scheme in space 
4H  [20]: 

  

ty y   , 

where 
 2 3, ( / 2) , ( / 2) ( / 8), t t t t

t t t t t t t
t ty y y yy y   

, 
 ,0,0,0 
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0 0 0

0 2 0 0

0 0 2 0

0 0 0 16
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R Q

R Q

Q

 
 

  
 
   
 

   , 

  Based on Theorem 4 from [20, p. 284], the following assertion holds. 

 Theorem 4. Let 0D D   , 0B B   , 0A A    and the following operator 

inequalities be satisfied:  

Re 0M  ,  0  ,  
4 0R Q   

,  
16 0Q 

.                             (22) 

Then, to solve the difference scheme (15), (8), the following a priori estimate is valid: 
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where  

2
nY

   is calculated according to (18). 

 Let us check the fulfillment of conditions (22). The first two conditions are satisfied since 

0M   and 0A A  , other conditions will be satisfied if inequalities (21) hold. 

 Based on Theorems 3 and 4, the following result holds. 

 Theorem 5. Let 0D D   , 0B B   , 0A A    and condition (21) be satisfied. 

Then the solution to the difference scheme (15), (8) converges to a smooth solution of the 

original problem (1)-(3) and the following accuracy estimate holds  
2 4( , ) ( , ) ( ), ,i n i n i h ny x t u x t O h x t       

. 

 7. Higher accuracy on spatial variables. If the solution to the original differential 

problem has the necessary smoothness in spatial variables, then difference operators of high-

order approximation can be constructed. Obtaining difference operators with a higher order of 

approximation can be achieved in various ways. For example, operators of the difference 

scheme (15), (8) 
Q

, R , and A   are chosen in the following form ( 0  ):  
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1 , 112
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,                                                     (23) 

where m m
A y y  . Consequently, difference operators 

Q
, R , and A  in (23) 

approximate differential operators with the fourth order of approximation error, i.e. 
4 2 2 2

1 2 3
( ),O h h h h h  

. 

8. Algorithms for implementing the scheme. Scheme (11) for 1 2    , 

3 4      has the following form: 
( ) ( ) ,t t t t t t nDy By Ay t 

    
, 

where 
( ) (1 2 )y y y y   

 

    , 
( ) (1 2 )y y y y   

 

    . If 0   , then we 

obtain the explicit scheme (7), (8), implemented directly, and for other values of  , we obtain 

an implicit scheme, implemented by the sweep method. Numerical calculations can be 

performed using the high-accuracy scheme (15), (8) with operators (23). 

 9. Conclusions. A boundary value problem for the equation of dynamics of a 

compressible stratified rotating fluid was considered. Based on the finite difference method, 

parametric difference schemes of high-order accuracy in time were constructed and studied. 

The presence of parameters in the scheme allows for regularization of schemes to optimize the 
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implementation algorithm and the accuracy of the scheme. The corresponding a priori 

estimates were obtained and, on their basis, theorems on the rate of convergence and accuracy 

of the constructed algorithms were proven with sufficient smoothness of the solutions to the 

original differential problem. Based on these advantages, it is possible to study other boundary 

value problems, in particular, nonlocal boundary value problems. Moreover, these results can 

be extended to loaded equations with local and nonlocal boundary conditions. 
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