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 The solution of the Navier-Stokes equations for a viscous 

incompressible fluid in an unbounded domain has 

important applications in medicine, particularly in 

simulating blood flow in the heart and veins. In this 

scenario, the annotation may be stated as follows: this 

research focuses on the solutions of the Navier-Stokes 

equations for a viscous incompressible fluid in an infinite 

area, with an application to the modeling of blood flow in 

the heart and blood arteries. The study describes several 

approaches for simulating blood flow, including 

hemodynamics in the aorta, major arteries, and minor 

vessels. Examples of blood flow velocity, pressure, and 

other characteristics are provided under a variety of 

settings, such as the treatment of cardiovascular 

disorders. In conclusion, this work makes an essential 

addition to the field of medical physics and 

hydrodynamics, and it can help scientists and clinicians 

investigate blood flow in diverse settings and create 

novel treatments for heart and vascular illnesses. 
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INTRODUCTION 

Blood viscosity is an essential factor in the cardiovascular system. High viscosity can 

cause blood flow complications, such as increased frictional forces between blood vessel 

walls, increasing the risk of thrombosis and atherosclerosis. The viscosity of blood is 

determined by its composition and the qualities of red cells. Furthermore, viscosity has a 

significant impact on cardiac function. As blood viscosity falls, so does the resistance to veins 

and veins, reducing the heart's workload. As blood viscosity rises, the heart must work harder 

to push it through the blood arteries. Thus, appropriate cardiovascular system function 

requires adequate blood viscosity.  

Viscosity is defined as the friction force between molecules that stops liquids from 

flowing freely. Viscosity in vessels is vital for moving blood throughout the cardiovascular 

system. Blood is composed of cells and plasma, which includes proteins, carbohydrates, lipids, 

and other things. When blood flows through the vessels, it comes into touch with the smooth, 

somewhat mucus-coated inner surface of the vessel walls. This improves blood mobility 
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inside the vessels, yet viscosity still has an impact on blood flow. Certain medical problems, 

such as high blood cell counts, fat levels, and other chemicals, can induce increased blood 

viscosity. This can result in blood clots, as well as a heart attack or stroke. 

Given that blood viscosity plays a significant role in the pathophysiology of many 

illnesses, assessing and monitoring its level is a valuable tool for diagnosis and therapy. 

Viscosity is a critical characteristic that influences hemodynamics. It regulates the resistance 

of blood as it flows through the arteries. There are numerous techniques to represent 

viscosity in hemodynamics: 

• Measurement of blood rheology. To do this, specific machines such as rheometers are 

employed to determine the dynamic and kinematic viscosity of the blood. 

• Calculation of blood flow through a physical model of vessels using mathematical 

modeling approaches. This allows us to assess hemodynamic properties under settings of 

changing blood viscosity. 

• Indirect indicators – for example, an increase in fatty acids, which lead to a change in 

blood viscosity. 

• Calculation of protein concentration. Protein concentrations in the blood can drop or 

rise under a variety of clinical circumstances, affecting viscosity and, as a result, 

hemodynamics. The first part of the fluid motion equation is a system of three non-

homogeneous parabolic equations that correspond to three projections of fluid velocity, while 

the second part contains components of convective acceleration caused by the in 

homogeneity of the velocity field, the intensity of the field of mass forces, and the pressure 

gradient. 

NAVIER-STOKES EQUATIONS FOR A VISCOUS INCOMPRESSIBLE FLUID 

The state of a moving fluid is determined by setting five values: three components of 

velocity V(x; y; z; t) pressure p(x; y; z; t) and density _(x; y; z; t)  In fluid mechanics, its 

molecular structure is not considered, it is assumed that the fluid fills the space entirely, 

instead of the fluid itself, its model is studied, a fictitious continuous medium with the 

property of continuity. This approach simplifies the researching, all mechanical and 

hemodynamics characteristics of the liquid medium (velocity, pressure, density) are assumed 

to be continuous and differentiable. 

The equations of motion of a viscous incompressible fluid (Navier-Stokes equations) in 

projections on the coordinate axis by velocity components have the form [1,6] 
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where 
       , , , , , , , , , , , , ,x y z yx y z t x y z tt x y z t x z     V i j k

; values of x; y; z; t – are called Euler 

variables,        , , , , , , , , , , , ,x y zx y z t F x y z t F x y z t F x y z t  F i j k
-is the intensity of the field of mass forces 

grad 
,

p p p
p p

x y z

  
   

  
i j k
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 – operator "nabla" , ρ – density of the liquid, υ– kinematic viscosity of the liquid, 

i, j, k – orts. The continuity equation for an incompressible fluid 
𝑑𝑦

𝑑𝑡
= 0: 

0,
yx zdi

x y z

 

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V

 
 , ,x y z

, t  (4) 

The main task of hydrodynamics is to find the following functions of coordinates and 

time: 
 1 , , ,x f x y z t 

 

 2 , , ,y f x y z t 
,

 3 , , ,z f x y z t 
,

 4 , , ,p f x y z t
under the given initial conditions 

 0const  
. (5) 

 0 1| , , ,0x t f x y z   ,
 0 2| , , ,0y t f x y z   ,

 0 3| , , ,0z t f x y z   under the given initial 

conditions. (6) 

The equations of motion of a viscous incompressible fluid (1)-(4), tested in practice, 

adequately reflect the physical phenomenon in liquids and are a correct mathematical model. 

Therefore, the equations of motion (1)-(3) and continuity (4) are sufficient to solve the main 

problem of hydrodynamics when vx(x; y; z; t); vy(x; y; z; t);vz(x; y; z; t) – continuously 

differentiable functions with respect to t and twice continuously differentiable functions with 

respect to variables x; y; z; in the domain [4,6]
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 . 

In the classical formulation, the initial problem for the Navier-Stokes equations for a 

viscous incompressible fluid in an unbounded domain T has the form: find functions, 

  1, , , :x x y z t T R  
,

  1, , , :y x y z t T R  
, 

  1, , , :z x y z t T R  
 

such that they satisfy equations (1)-(3) in Ω×T and the continuity equation (4) under 

given initial conditions (6), where 
   , , ,0if x y z C 

,
 , , ,0i if x y z c

,
0ic const 

 ,

1,2,3i  . 

The proposed method for solving this problem is obtained on the basis of the author's 

works published in [5-7]. For simplicity of presentation of the results obtained, a regular 

solution of the Navier-Stokes equation is given below[5,7]. 
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Suppose that solutions of system (1)-(4) with initial condition (6) are known. 

Then 

 
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with initial conditions 

 0 1| , , ,0tU f x y z  ,
 0 2| , , ,0tV f x y z   

 0 3| , , ,0tW f x y z  , 

in the area of 
  3, ,x y z R 

, t T  

In here
   1 , , ,, , , x y z tx y z t C T  

,
   1 , , ,, , , x y z tx y z t C T  

,
   1 , , ,, , , x y z tx y z t C T  

 

– unknown bounded absolutely integral continuous functions – unknown bounded 

absolutely integral continuous functions. In particular if 
   1 , , , , , ,x y z t x y z t 

,

   1 , , , , , ,x y z t x y z t 
,

   1 , , , , , ,x y z t x y z t 
else 

   , , , , , ,xU x y z t x y z t
,

   , , , , , ,yV x y z t x y z t
,

   , , , , , ,zW x y z t x y z t
in    (8)

 , ,x y z 
, t T . 

Systems of parabolic equations (13)-(15) with initial conditions (16) have solutions [8, 

9]. 
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IV. RESULTS 

The results, which illustrate the uniqueness of Navier-Stokes equation solutions for a 

viscous incompressible fluid under specific beginning circumstances and with the continuity 

condition, are based on mathematical hydrodynamics theory. A theorem on the existence and 

uniqueness of solutions for the Navier-Stokes equations asserts that under specified 

beginning circumstances and continuity, the Navier-Stokes equations have a unique solution 

with regard to the fluid velocity components. This implies that each hydrodynamic issue 

handled by the Navier-Stokes equations has a unique solution [5,7]. 

 
Fig.1. Estimate the range of velocity minimum and maximum 

This theorem has important implications for many fields of science and technology, such 

as aerodynamics, geophysics, biomechanics and medicine. For example, in medicine, it can be 

used to simulate blood flow in the heart and blood vessels. 

 

        

   

 

 

 

Table1. Estimate the range of velocity 

Although the existence and uniqueness theorem for solutions to the Navier-Stokes 

equations is a significant finding, obtaining an analytical solution to the equations may be 

challenging in some instances. As a result, numerical approaches for solving the Navier-Stokes 

equations on a computer are becoming increasingly relevant in practical applications. 

Furthermore, the diffusion equation, additional parabolic differential equations may be 

used to represent blood arteries, such as those that explain the propagation of electrical or 

chemical impulses in the nervous system or the propagation of heat in tissue during laser 

therapy. The particular equation used is determined by the system's features and the physical 

processes that must be represented. 

 

Magnitude Minimum Maximum 

U:=x -1.99845 1.9992 

V:=y -1.99727 1.99955 

W:=z -0.995313 0.995265 

P: -3.95736 -0.0081647 
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Fig 1. 1.Model of arteries velocity blood flow with oriented place 

 
Fig 1.2. Model of arteries velocity blood flow with oriented place 

 
Fig1. 3. Model of arteries velocity blood flow with oriented place 
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Fig 1.4. Model of arteries velocity blood flow with oriented place 

 
Fig1.5. Model of arteries velocity blood flow with oriented place 
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