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обобщённых функций, определения и свойства 

математических объектов, используемых в этих 

областях. На основании результатов и методов 

обобщённой производной показаны примеры нахождения 

производных разрывных функций. 
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ВВЕДЕНИЕ. К числу наиболее часто используемых математических операций 

принадлежит вычисление производных функций 
( )f x

. Большинство задач уравнений 

математической и теоретической физики решается при помощи методов, связанных с 

так называемыми интегрируемыми функциями и обобщёнными производными.  Для 

работы с такими функциями требуется специальная техника – математический 

аппарат обобщённых функций. Некоторые из таких методов основаны на введении 

понятия обобщённых производных, позволяющих дифференцировать разрывные 
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функции и производить другие операции, невозможные в классическом анализе [4]. 

Обобщая различных понятий и методов математического анализа и теории 

дифференциальных уравнений, обобщённые функции, находят широкое применения 

во многих современных направлениях математики и физики.  

В данной работе мы используем понятие обобщённой производной как элемента 

обобщённых функций, что позволяет применять многие фундаментальные понятия 

стандартного математического анализа. 

  ИЗЛОЖЕНИЕ ОСНОВНОГО МАТЕРИАЛА. Известно, что производная 

дифференцируемой функции в заданной точке x  определяется формулой 

0

( ) ( )
( ) lim

x

f x x f x
f x

x 

  
 

 . (1.1) 

Ниже приводим некоторые теоретические сведения. Все функции в данной работе 

предполагается принимающими действительные значения, областями задания 

рассматриваемых функций являются числовые множества.  

1. Пусть 
( )C G

 класс непрерывных определенных в области G  (открытый 

интервал числовой оси)  функций :G R  . Если m целое неотрицательное число, 

то символ 
( )mC G

 означает множество всех функций, определённых по крайней мере 

на G , у которых существуют на G  непрерывные производные до порядка m  

включительно. Для каждой функции :G R   определим её носитель как 

 : ( ) 0suрр х R x   
. Каждая функция 

( )x
 бесконечно дифференцируема 

( ( ))C R 
 и финитна, т.е. все они обращаются в нуль вне конечного отрезка [ , ]a b , 

причём границы отрезка зависят от 
( )x

. 

Через 0 ( )mС G
 обозначается множество финитных в G  функций класса 

( )mC G
, 

при 0m   просто пишем 0( )C G .  

Для 
1 p  

 будем обозначать через ,p locf L
 локально-суммируемую 

функцию и выберем неотрицательное число m , отрезок [ , ]a b  и множество функций 

0 [ , ]mC a b
 (или 0D C  

). 

Определение 1. Всякая непрерывная финитная функция 0( ) [ , ]mx C a b 
 

называется основной, а совокупность основных функций называется пространством 

основных функций и обозначается 0 [ , ]mD C a b
или 0 [ , ]D C a b

.  

Таким образом, 0D C  
множество основных, бесконечно дифференцируемых, 

обращающихся в нуль вместе со всеми своими производными (финитных) функций. 
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Определение 2. Будем говорить, что на пространстве D  задан функционал, если 

указано правило, по которому каждой функции D  ставится в соответствие 

определенное число 
( , )f 

.  

Определение 3. Линейный непрерывный функционал 
f

 на D  называется 

обобщённой функцией, если он непрерывен на D , т.е. ( , ) 0mf    для всякой 

последовательности 0m   в D .  

Множество всех обобщённых, бесконечно дифференцируемых и финитных 

функций обозначается через 
/D .  

Пример 1. Определение функционала интегралом или связь между 

непрерывными и обобщёнными функциями. Пусть функция 
( )f x 

обычная в смысле 

определения непрерывная функция, заданная на отрезке [ , ]a b . Его можно считать 

также обобщённой функцией порядка 0m  , если использовать следующее правило 

действия 
f

 на основные функции 0 [ , ]:D C a b 
       

( , ) ( ) ( ) ,

b

a

f f x x dx  
  (1.2) 

так как интеграл от непрерывной функции по отрезку всегда определён, то 

равенство (1.2) переводит каждую функцию 0 [ , ]C a b
в определенное число 

( , )f 
, 

т.е. функционал. Такая обобщённая функция называется регулярной. 

Обобщённая функция, не являющаяся регулярной (т.е., локально интегрируемой), 

называется сингулярной. 

Пример 2. Функция Дирака 1,( ) locx L  
это пример сингулярной обобщённой 

функции:   

( ) ( ) (0), ( )
R

x x dx D R     
. 

А функция Хевисайда 
( )x

 вводится как регулярный функционал:  

1, 0,
( )

0, 0.

x
x

x



 

  

2. Если заданная функция 
( )f x

 для любого 
( ) ( , )x D a b 

 удовлетворяет 

соотношению 
( ) ( ) ( , ) (1 )pf x x L a b p    

, то пишут , ( , )p locf L a b
. Поэтому 

, ( , ) : ( , ), ( , ) .p loc pL a b f f L a b D a b    
                                                    

В частности, классу , ( , )p locL a b
 принадлежит любая непрерывная или имеющая 

точки разрыва 1-го рода в интервале 
( , )a b

 функция. Например, функция 
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, 0,

1 , 0.

x
x

xsignx

x




 
   

Определение 4. Если , ( , )p locf L a b
 и для любого 

( , )D a b
 справедливо 

равенство 

                                 

( )( ) ( ) ( 1) ( ) ( ) , 1,2,...

b b

n n

a a

f x x dx g x x dx n    
                      (1.3) 

то 
( )g x

 называется обобщённой производной n - го порядка функции 
( )f x

 в 

промежутке 
( , )a b

 и обозначается 
( )( ) ( )ng x f x

. 

Определение 5. Для любой обобщённой функции 
/ ( )f D G

 положим    

                          0( ( )) : ( , ) ( 1) ( , ), 1,2,...m m mD C G D f f D m       
.          (1.4)                          

Если 
( ) ( )g x C G

, то полагается  0 ( ) : ( , ) ( , )C G gf f g    
. 

Как мы видим определение обобщённой производной расширяет понятия 

дифференцирования и даёт возможность находить производные у некоторых 

функций, которые не являются дифференцируемыми в обычном смысле. 

 Пример 3. Сингулярная функция имеет производную, обращающуюся в 

бесконечность на счетном множестве точек. Конечнозначными сингулярными 

функциями являются функция signx  и  
x

. 

x x sign x
 не имеет (обычной) производной в нуле. После введения 

производной в обобщённом смысле, первой производной 
x

 будет функция сигнум: 

 x signx 
, для второй производной получаем дельта-функцию Дирака:  

  2 ( )x x 
 .  

Отметим основные свойства обобщённых производных. 

Свойство 1. Если функция 
f

 в каждой точке [ , ]a b  имеет непрерывную 

обобщённую производную 
( ) ( )nf x

, то её обобщённая производная n - го порядка 
( )g x

 

в 
( , )a b

 совпадает с 
( ) ( )nf x

.  

Свойство 2. Функция, не дифференцируемая в смысле равенства (1.1) может 

иметь обобщённую производную. 

Свойство 3. Понятие обобщённой производной определяется одновременно для 

всякого интервала.   
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Свойство 4. Для того, чтобы функция 
f

 имела обобщённую производную n - го 

порядка, необязательно, чтобы она имела обобщённые производные ниже n - го 

порядка. 

Многие свойства обобщённой производной являются аналогами свойств обычной 

производной, но не все.  

Утверждение (связь обычной и обобщённой производных (см. [1-3, 6]). Пусть    
1 1

0 0( ) [ , ] [ , ]f x С a x C x b 
. 

Тогда производная функции 
( )f x

 в смысле обобщённых функций равна сумме 

производной в обычном смысле и произведения скачка на обобщённую функцию  , 

сосредоточенной в точке разрыва: 

                                            
 

0
0( )

x

df
Df f x x

dx
  

,                                             (1.5) 

где 
Df 

производная в смысле обобщённых функций,                                                       

df

dx


классическаяпроизводная (определённая всюду, кроме точки 0x x ):  

0

0

( ), ,

, ,

f x x xdf

произвольное x xdx

 
 

  

заметим, что 
1( )f C R

, в точке 0x  функция имеет разрыв 1-го рода и величина 

скачка в точке разрыва 0x :
 

0
0 0( 0) ( 0)

x
f f x f x   

 и 0( )x x    дельта -

функция со сдвигом аргумента на 0x .  

Обобщённую функцию, соответствующую функции 

df

dx  по формуле (1.5), 

называют регулярной частью обобщённой производной 
( )Df x

.              

В частности, если функция непрерывна, то скачок в точке 0x  равна нулю и 

производная в смысле теории обобщённых функций совпадает с производной в 

обычном смысле.  

Пример 4. Правило отыскания производной в смысле обобщённых функций.  

Найдем производные порядка 1 и 2 разрывной функции Хевисайда, как регулярная 

обобщённая функция, если  
2( ) ( 1) ( )f x x x x  

, где 
( ) 0x 

 при 0x  ; 
( ) 1x 

 

при 0x  . 

Решение. Пусть 1) 
/( ) , ( ) ,f x D g x C 

тогда ( )gf g f gf    ;                                

2) 
1 1( ) [ , ] [ , ], ; ( 0)f x С a C a a R f a      

предельные значения конечны; 3) 

обычная производная { ( )}f x является регулярной обобщённой функцией. Тогда 
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согласно формуле производной в смысле обобщённых функций (1.4) и используя 

формулу дифференцирования сложного аргумента имеем:   
2 2( ) ( 1)(2 1) ( )Df x x x x x x      

. 

Так как производная функции Хевисайда равна    функции, поэтому    
2 2( ) ( )x x x x    

. 

Теперь воспользуемся следующей формулой упрощения сложного аргумента: 

если функция 
( )f x

 имеет простые корни ix , где ( ) 0, ( ) 0i if x f x  , тогда  

1
( ( )) ( )

( )
i

i i

f x x x
f x

  



, 

где 
2

1 2( ) ( 1), 0; 1; ( ) 2 1f x x x x x x x f x x       
 и мы приходим к 

равенству  

2

1,2

1
( ) ( ) ( ) ( 1)

2 1
i

i i

x x x x x x
x

   


     



. 

Отсюда следует, что 
2( ) ( ) ( 1)x x x x      

. Следовательно,  
2 2 2

2

( ) (2 3 1)( ( ) ( 1)) ( ) ( )

2 ( 1) 3 ( 1) ( 1) ( ) ( ).

Df x x x x x x x x x

x x x x x x

    

    

          

          

Здесь применено правило умножения  функции на бесконечно 

дифференцируемую функцию, которое по определению равносильно умножению  

функции на число 
(0) : ( ) ( ) (0) ( )f f x x f x 

. 

Производная 2-го порядка равна: 

 2 2 2( ) ( ) ( ) (2 1) ( ) ( )

(2 1)( ( ) ( 1)) ( ) 2 ( 1) ( )

( 1) ( ) ( 1) ( ) ( ).

D f x x x x x x x x

x x x x x x

x x x x x

   

    

    

         

        

       
 

Следовательно,  
2 ( 1) ( ) ( )D f x x x      

. 

Как мы видели, любая обобщённая функция имеет производную. Отсюда следует, 

что и любая локально интегрируемая функция имеет в смысле определения 5 

производную. 

Из формулы (1.4) следует, что производная в смысле стандартного 

математического анализа непрерывно дифференцируемой функции, рассматриваемая 

как функционал над пространством 0D C 
, совпадает с её производной в смысле 

теории обобщённых функций. 
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