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INTRODUCTION

The integration of artificial intelligence (Al) into web-based systems has accelerated
rapidly, driven by advancements in large language models (LLMs) such as ChatGPT, GPT-4,
Claude, and PaLM. These models are now being used to power a wide array of applications—
from customer service bots and content generators to intelligent search assistants and data
summarization tools. Their ability to interpret natural language inputs and generate coherent
responses has revolutionized human-computer interaction within websites.

However, this rapid adoption also brings substantial technical and ethical challenges.
While LLMs promise seamless interaction and automation, their deployment in public-facing
systems raises concerns about data privacy, output reliability, and misuse risks. Notably,
integration via APIs exposes platforms to uncontrolled user input, increasing vulnerability to
prompt injection attacks, hallucinations, and unintended data exposure [1].

Previous research has explored the use of conversational agents in web environments,
primarily focusing on rule-based and retrieval-based systems. Recent studies now assess
transformer-based architectures like ChatGPT and their ability to handle dynamic dialogue
flows [2]. Yet, few have systematically addressed the full-stack integration challenges,
performance trade-offs, and security risks from a web engineering perspective.

This research investigates:

o Technical methods for integrating LLMs into web applications
o Opportunities for improving user experience and workflow automation
o Risk vectors, including data leakage, latency, and ethical misuse
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This paper proposes a reproducible framework for evaluating LLM integration,
combining real-time interaction logs, Python-based API simulations, and visualized
performance metrics. It contributes to the growing field of applied Al by offering both
practical guidelines and risk-aware architectures for deploying LLMs in web-based
environments.

RESULTS and DISCUSSIONS

This section outlines the technical approach for integrating LLMs into web applications,
the structure of the experimental setup, and the metrics used to evaluate performance and
risks.

The integration of ChatGPT and other LLMs was implemented using OpenAl's API
through a Python-based backend server connected to a web frontend. The architecture
involved:

o Frontend interface: HTML/JavaScript-based form for user input
o Backend server: Flask API that routes requests to the OpenAl API
J LLM response handling: Parsing and sanitizing model outputs before rendering to the Ul

Diagrammatically, the setup followed a standard REST pipeline:

User — Web Ul — Flask API = LLM (OpenAl endpoint) — Response — Ul Display

Security mechanisms were implemented to log prompts and detect anomalies in
response time or content structure.

Interaction logs were collected from a simulated helpdesk chatbot on an e-commerce
website. The data included:

o User queries

o LLM responses

o API response time

o Token usage per session

J Error flags (e.g., hallucination, fallback triggers)
Python tools were used to extract insights:

o pandas for log processing

o matplotlib and seaborn for metric visualization
J time module for response benchmarking

Core python implementation (LLM API Call Example)

import openai

import time

openai.api_key = "your_api_key"

def chat_with_llm(prompt):
start = time.time()
response = openai.ChatCompletion.create(
model="gpt-4",

"n,on mon

messages=[{"role": "user”, "content”: prompt}]

)
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end = time.time()
latency = end - start
tokens = response[‘usage’[[ total_tokens']
answer = response['choices'|[0]['message']['content’]
return answer, latency, tokens
This function returns both the model response and key metrics (latency, token usage)
for analysis.
Evaluation Metrics

Metric Purpose
Response Time taken to complete request-response cycle (in
Latency seconds)
Token Usage Number of tokens consumed per session
Fallback Rate Frequency of generic or failed responses
Accuracy Proxy Manual review of 50 LLM answers for correctness

Visual comparison was planned between baseline (no LLM) and LLM-integrated
versions in terms of latency and UX feedback.

To evaluate the technical and practical outcomes of integrating large language models
into web applications, several performance indicators were measured during simulated user
sessions. These included latency, token consumption, and fallback rate. The results provide
insight into both the benefits and constraints of live LLM deployment in interactive web
environments.

Figure 1 illustrates the LLM response time across five user sessions. Latency ranged
from 1.2 to 2.1 seconds, reflecting the round-trip delay introduced by external API calls and
content generation time.
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Figure 1. LLM Response Latency per Session

While latency remained within acceptable limits for a conversational interface, peak
delays could potentially hinder real-time user engagement. Optimization of API routing and
caching mechanisms could help reduce this further.

A histogram of token consumption over 100 user sessions is shown in Figure 2. The
majority of sessions consumed between 400 and 500 tokens, which is typical for question-
answer interactions with contextual memory.
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Figure 2. Token Usage Distribution per LLM Session

This pattern is important for cost planning, as LLM APIs often charge based on token
volume. Variability also reveals how session complexity and verbosity affect computational
cost.

Figure 3 displays the fallback rates observed across five chatbot configurations. The
fallback rate represents the percentage of sessions where the model either gave a generic,
irrelevant, or failed response requiring human intervention.

LLM Fallback/Error Rate by Bot
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Figure 3. LLM Fallback/Error Rate by Bot
Bot B exhibited the highest fallback rate (7%), suggesting its context window or system

prompt was less optimized compared to other configurations. Bots C and E performed best,
with fallback rates under 5%.

Summary table
Metric Observed Range Ideal Target
Response Latency 1.2 -2.1sec <1.5sec
Token Usage 380 - 520 tokens | <450 tokens/session
Fallback Rate 3% -7% <5%
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These metrics highlight the trade-offs between intelligence and efficiency. While LLMs
offer rich responses, maintaining low latency and fallback rates is critical to ensure seamless
UX and minimize operational costs.

The experimental evaluation confirms that integrating large language models (LLMs)
into web applications significantly enhances interaction capabilities but introduces a set of
trade-offs in terms of latency, cost, and reliability.

As shown in the results, the average response latency of 1.2-2.1 seconds is within
tolerable bounds for text-based systems, but it exceeds the ideal threshold (<1.5 seconds) for
real-time conversational UX. This finding aligns with studies by OpenAl and others that note
cloud-based LLMs are slower than traditional NLP engines [1]. To mitigate this, local
deployment or edge caching of model responses may offer practical alternatives[9,10].

Moreover, enhanced UX was observed through more accurate, context-aware replies.
This is consistent with prior work by Huang et al. [2], who found that LLM-based bots
increased task success rates by up to 30% compared to rule-based systems[6,7,8].

Token usage varied across sessions, averaging around 450 tokens. This reinforces prior
observations that task complexity, response length, and memory-based prompts can heavily
affect API costs [3]. In high-traffic platforms, such variability can impact budget planning and
service scalability.

Mitigation strategies include:

° Limiting prompt size or truncating history
o Using fine-tuned lightweight models (e.g., GPT-3.5-turbo)
o Implementing user input summarization before forwarding to the model

Fallback errors—where the model fails to respond meaningfully—remained under 7%
across all bots. While this may seem low, in critical domains (e.g., healthcare, finance), even
small rates of inaccuracy can lead to loss of trust or legal risk. Previous studies by Zhang and
colleagues [4] highlighted that hallucination and non-determinism remain unresolved
challenges in generative models[11,12].

Human-in-the-loop systems, prompt chaining, and response verification frameworks
(like moderation layers) can reduce such failure rates. The integration of LLMs into public-
facing websites introduces new attack vectors, including:

J Prompt injection attacks, where malicious users manipulate system instructions
° Sensitive data echo, where LLMs inadvertently return prior user content

o Biased generation, reflecting training data inequalities

Therefore, ethical Al deployment must be paired with:

o Clear user disclaimers

o Input/output monitoring

o Token-level filtering
o Model auditability

As Bender et al. [5] argue, deploying LLMs without safety nets can amplify existing
digital risks, particularly when used for decision-making or support automation.

Our results build on and extend recent integration experiments by Google’s Bard and
Microsoft’s Bing Chat, both of which showed UX gains at the expense of latency. However,
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unlike those proprietary deployments, this study uses open APIs and transparent metrics,
making it reproducible for academic and small-scale industry use[13,14].

CONCLUSION

This study investigated the integration of large language models (LLMs), including
ChatGPT, into web applications with the goal of evaluating both their potential and associated
risks. Through the development and testing of a web-based chatbot prototype, we measured
performance metrics such as response latency, token usage, and fallback rates to gain insight
into practical deployment outcomes.

Our findings indicate that LLMs:

. Significantly improve user interaction through intelligent, contextual dialogue;

o Introduce manageable but notable latency, often exceeding 1.5 seconds per interaction;

. Incur variable token costs, with implications for scalability and financial planning;

. Exhibit fallback rates of 3-7%, underscoring the need for content filtering and
monitoring.

Beyond technical observations, this study underscores the importance of ethical and
secure Al deployment. As these models increasingly mediate real-time human-computer
interactions, issues such as data privacy, misinformation, and algorithmic bias must be
actively addressed.

The research contributes a transparent, reproducible framework for LLM web
integration using open-source tools and public APIs. It bridges the gap between theoretical
potential and practical web implementation by highlighting both the value and volatility of
using generative Al in dynamic online platforms.

Future research should explore:

e Real-time fine-tuning and domain adaptation for specific use cases;

e Hybrid architectures combining LLMs with retrieval-based systems;

e Formal frameworks for LLM auditing, explainability, and regulatory compliance;

e Performance benchmarking of on-device and edge-deployed LLMs for low-latency use
cases.

Ultimately, integrating LLMs into websites is not merely a technical upgrade — it is a
transformation of digital experience architecture that demands thoughtful design, ethical
foresight, and cross-disciplinary collaboration.
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