
EURASIAN JOURNAL OF MATHEMATICAL
THEORY AND COMPUTER SCIENCES

Innovative Academy Research Support Center
IF = 9.206 www.in-academy.uz/index.php/ejmtcs

Volume 6 Issue 01, January 2026 5 ISSN 2181-2861

 USING THE GRAPHICAL TOOLS OF BORLAND C++
BUILDER

Botirov Muzaffarjon Mansurovich
Qoqon University, Department of Digital Technologies and

Mathematics mbotirov@kokanduni.uz |
botirovmuzaffarmansurov@gmail.com https://orcid.org/0000-

0002-2078-1698
https://doi.org/10.5281/zenodo.18160692

ARTICLE INFO ABSTRACT

Received: 29th December 2025
Accepted: 05th January 2026
Online: 06th January 2026

 Curious students who begin learning modern

programming languages with the, regardless of the

language, inevitably become acquainted with

graphics libraries. The following article provides

information on the graphical tools of Borland C++

Builder, as well as tips and instructions for creating

multi-form applications.

KEYWORDS

TCanvas, TFont, TPen, TBrush

classes; TFont class properties:

Color, Name, Size, Style; TPen

class properties: Color, Mode,

Width, Style; TBrush class

properties: Bitmap, Color, Style.

Introduction. Main part. In the world of programming, there are many

programming languages. However, apart from some minor differences, the foundation of

all languages is the same. For example, almost every programming language has numbers,

strings, arrays, and object-based data structures, as well as basic branching (if, else,

switch) and iterative (loops: for, while) statements.

In fact, the most essential thing in programming is the algorithm. Problemsolving

skills help you understand algorithms and come up with new ones. You can know the

syntax of a programming language perfectly, but without algorithms you can't write an

independent program.

The C++ Builder application encapsulates Windows GDI functions at various levels.

In this case, one method is important, through which the graphic components render their

images on the monitor screen. When a GDI function is called directly, you must pass the

device context handle to these graphic components. This handle exposes the drawing

objects you have selected—pens, brushes, fonts. After you have finished working with the

graphics, you must restore the device context to its original state, and only then can you

release it.

Instead of forcing you to work with graphics at that level of detail, C++ Builder offers

a simple and complete interface for graphic components via their Canvas property. This

property initializes the correct device context and releases it when you finish drawing.

The BasePen has properties that operate under the names of the brush, pen, and font

definitions.

The only thing a user needs to do when working with graphics components is specify

the attributes of the drawing objects being used. You don't have to monitor system

file:///D:/Work/Innovative%20Academy/Innovative%20Academy%20journals/EJAR/Main%20documents%20-%20Asosiy%20fayllar/www.in-academy.uz
https://orcid.org/0000-0002-2078-1698
https://orcid.org/0000-0002-2078-1698
https://orcid.org/0000-0002-2078-1698
https://orcid.org/0000-0002-2078-1698
https://orcid.org/0000-0002-2078-1698
https://orcid.org/0000-0002-2078-1698
https://orcid.org/0000-0002-2078-1698

EURASIAN JOURNAL OF MATHEMATICAL
THEORY AND COMPUTER SCIENCES

Innovative Academy Research Support Center
IF = 9.206 www.in-academy.uz/index.php/ejmtcs

Volume 6 Issue 01, January 2026 6 ISSN 2181-2861

resources when creating, selecting, and releasing objects. The base class itself takes care

of this.

The purpose of this article is to provide information on developing applications in

the Borland C++ Builder graphical environment.

In Microsoft Windows, when a drawing is created, the coordinates of the drawing

area are based on the screen's top-left corner. Each point on the screen has its own

reference at that point. This point is plotted in the Cartesian coordinate system starting

from the origin (0,0), with the horizontal axis shifting to the right from (0,0) and the

vertical axis shifting down from (0,0).

This default origin is simply the operating system's standard coordinate system. So

if you draw a shape with Canvas->Ellipse(-100, -100, 100, 100), you'll get an ellipse

whose center is at the top-left corner of the screen. In this case, only the bottom-right 3/4

of the circle is visible.

void __fastcall TForm1::Button2Click(TObject *Sender)

{

Canvas->Pen->Color = clBlue;

Canvas->Ellipse(-100, -100, 100, 100);

}

In the same way, you can draw any geometric or non-geometric figure by using one

of the TCanvas methods or create your own custom functions. For example, the following

code draws vertical and horizontal lines that intersect in the middle of the form:

//--

void __fastcall TForm1:: Button1Click(TObject *Sender)

{

 Canvas->Pen->Color = clBlack;

 Canvas->MoveTo(ClientWidth/2, 0);

 Canvas->LineTo(ClientWidth/2, ClientHeight);

 Canvas->MoveTo (0, ClientHeight/2);

 Canvas->LineTo(ClientWidth, ClientHeight/2);

}

//---

Changing the default coordinate system in VCL

In some cases, you may not want to use the standard coordinate system for drawing.

This is sometimes necessary for graphics, charts, and other related tasks. When using

file:///D:/Work/Innovative%20Academy/Innovative%20Academy%20journals/EJAR/Main%20documents%20-%20Asosiy%20fayllar/www.in-academy.uz

EURASIAN JOURNAL OF MATHEMATICAL
THEORY AND COMPUTER SCIENCES

Innovative Academy Research Support Center
IF = 9.206 www.in-academy.uz/index.php/ejmtcs

Volume 6 Issue 01, January 2026 7 ISSN 2181-2861

Borland C++ Builder (or Delphi), there are two ways to change the origin of your drawing

area's coordinate system.

You can use the MoveWindowOrg() function to move the (0,0) origin of your drawn

area to any point (x,y). Its syntax is:

void __fastcall MoveWindowOrg(HDC DC, int DX, int DY);

The MoveWindowOrg() function takes three arguments. The first, the handle, must

be a Win32 HDC handle for the device context. For a shape, paintbox, etc., this HDC is the

handle to the canvas of the object you are drawing. The second argument, DX, is the

starting point of the new horizontal axis. The final argument, DY, represents the starting

point of the vertical axis.

After you call the MoveWindowOrg() function, you don't need to reference the

device context handle, because the compiler will know which handle you're using and you

can continue drawing the form.

After you call the MoveWindowOrg() function, it will refer to the device context

handle for any drawing coordinates you perform under its call.

//--

void __fastcall TForm1:: Button1Click(TObject *Sender)

{

HDC hDC = this->Canvas->Handle;

MoveWindowOrg(hDC, ClientWidth/2, ClientHeight/2);

Canvas->Pen->Color = clBlue;

Canvas->Ellipse(-100, -100, 100, 100);

Canvas->Pen->Color = clBlack;

Canvas->MoveTo(ClientWidth/2, 0);

Canvas->LineTo(ClientWidth/2, ClientHeight);

Canvas->MoveTo(0, ClientHeight/2);

Canvas->LineTo(ClientWidth, ClientHeight/2);

}

//---

As you can see, using this function is very easy. In addition, you can see that our lines

have disappeared (usually, you can still see the vertical line on the right side/border of

the shape). In reality, as the circle has shifted, the lines have also shifted based on the

current origin of the coordinate system. As mentioned above, as long as you keep track of

where your coordinate system is, you can draw shapes however you want. In this

example, we can draw shapes toward the center of the canvas.

In the example above, the origin was moved relative to the shape's client

dimensions. Additionally, you can use a constant value to set the current origin. In fact,

this can sometimes be faster and safer. In the new window, we place the form at the origin

(400, 300). We can also shift the lines of our coordinate system:

//--

void __fastcall TForm1:: Button1Click(TObject *Sender)

{

// Get the form's Handle to the Canvas

file:///D:/Work/Innovative%20Academy/Innovative%20Academy%20journals/EJAR/Main%20documents%20-%20Asosiy%20fayllar/www.in-academy.uz

EURASIAN JOURNAL OF MATHEMATICAL
THEORY AND COMPUTER SCIENCES

Innovative Academy Research Support Center
IF = 9.206 www.in-academy.uz/index.php/ejmtcs

Volume 6 Issue 01, January 2026 8 ISSN 2181-2861

 HDC hDC = Canvas->Handle;

 // Change the origin of the coordinate system

 MoveWindowOrg(hDC, 300, 200);

 // Create a blue pen

 Canvas->Pen->Color = clBlue;

 //Draw a blue circle

 Canvas->Ellipse(-100, -100, 100, 100);

 //Change the pen color to black

 Canvas->Pen->Color = clBlack;

 // Draw the vertical axis

 Canvas->MoveTo(0, 300);

 Canvas->LineTo(0, -300);

 // Draw the horizontal axis

 Canvas->MoveTo(-400, 0);

 Canvas->LineTo(400, 0);

}

//---

The Win32 library provides another mechanism for changing the coordinate system

used for drawing. The first thing you need to do is get the device context handle to the

canvas of the object you are using as the drawing area. In short, you get this handle just

as we did above.

A frequently used function similar to the above MoveWindowOrg() function is the

SetViewportOrgEx() function. Its syntax is:

BOOL SetViewportOrgEx(HDC hdc, int X, int Y, LPPOINT lpPoint);

The first argument of this function is a handle to the device context you are using for

drawing. The X and Y arguments specify the point that will serve as the new origin for the

coordinate system. The last argument is a pointer to the origin of the previous point. Using

Win32's SetViewportOrgEx() function is as easy as using the VCL's MoveWindowOrg()

function. Example:

void __fastcall TForm1::Button1Click(TObject *Sender)

{

 SetViewportOrgEx(Canvas->Handle, 300, 200, NULL);

 Canvas->Pen->Color = clRed;

 Canvas->Ellipse(-100, -100, 100, 100);

 Canvas->Pen->Color = clNavy;

 Canvas->MoveTo (0, 0);

 Canvas->LineTo(120, 0);

}

Consider the following example to try this out:

void __fastcall TForm1::Button1Click(TObject *Sender)

{

 SetViewportOrgEx(Canvas->Handle, 300, 200, NULL);

 Canvas->Pen->Color = clRed;

file:///D:/Work/Innovative%20Academy/Innovative%20Academy%20journals/EJAR/Main%20documents%20-%20Asosiy%20fayllar/www.in-academy.uz

EURASIAN JOURNAL OF MATHEMATICAL
THEORY AND COMPUTER SCIENCES

Innovative Academy Research Support Center
IF = 9.206 www.in-academy.uz/index.php/ejmtcs

Volume 6 Issue 01, January 2026 9 ISSN 2181-2861

 Canvas->Ellipse(-100, -100, 100, 100);

 Canvas->Pen->Color = clNavy;

 Canvas->MoveTo(0, 0);

 Canvas->LineTo(0, 120);

 Canvas->Pen->Color = clBlue;

 // Horizontal axis, from -X to +X

 Canvas->MoveTo(-300, 0);

 Canvas->LineTo(300, 0);

 // Vertical axis, from -Y to +Y

 Canvas->MoveTo(0, -200);

 Canvas->LineTo(0, 200);

 }

 The SetViewportOrgEx() function changes the origin of the coordinate system. At

the same time, it loads the new orientation of the axes. The horizontal axis moves

positively to the right from the origin (0, 0). The vertical axis moves positively down from

the origin (0, 0). This is illustrated as follows:

To experiment with this new direction, consider drawing a line at a 45º angle from

the origin. Such a line is designated as positive down and positive right. In other words,

the line is drawn from (0, 0) to (150, 150).

Example:

void __fastcall TForm1::Button1Click(TObject *Sender)

{

SetViewportOrgEx(Canvas->Handle, 300, 200, NULL);

 Canvas->Pen->Color = clRed;

 Canvas->Ellipse(-100, -100, 100, 100);

 Canvas->Pen->Color = clBlue;

 Canvas->MoveTo(-300, 0);

 Canvas->LineTo(300, 0);

 Canvas->MoveTo(0, -200);

 Canvas->LineTo(0, 200);

 Canvas->Pen->Color = clFuchsia;

 Canvas->MoveTo (0, 0);

 Canvas->LineTo(150, 150);

}

file:///D:/Work/Innovative%20Academy/Innovative%20Academy%20journals/EJAR/Main%20documents%20-%20Asosiy%20fayllar/www.in-academy.uz

EURASIAN JOURNAL OF MATHEMATICAL
THEORY AND COMPUTER SCIENCES

Innovative Academy Research Support Center
IF = 9.206 www.in-academy.uz/index.php/ejmtcs

Volume 6 Issue 01, January 2026 10 ISSN 2181-2861

//---

Microsoft Windows provides various options for controlling the orientation of the

coordinate system you want to use for your application. In addition, it supports the unit

system you want to use. We use the SetMapMode() function to control the coordinate

direction and/or specify the unit system to use. Its syntax is:

int SetMapMode (HDC hdc, int fnMapMode);

The first argument of the function, as mentioned above, is the handle. The second

argument is the types of unit systems for use.

Available system units: MM_TEXT, MM_LOMETRIC, MM_HIENGLISH,

MM_ANISOTROPIC, MM_HIMETRIC, MM_ISOTROPIC, MM_LOMETRIC, and

MM_TWIPS.

The default standard map mode is MM_TEXT. In other words, unless you specify

otherwise, this is the mode your application uses. In this map mode, it picks up and saves

the dimensions you specify in your functions. Additionally, the axes are oriented so that

they shift to the right from the horizontal axis (0, 0) and down from the vertical axis (0,

0). For example, the OnPaint event above can be rewritten as follows and produce the

same result:

void __fastcall TForm1::Button1Click(TObject *Sender)

{

HDC hDC = this->Canvas->Handle; SetMapMode(hDC, MM_TEXT);

 SetViewportOrgEx(hDC, 300, 200, NULL);

 Canvas->Pen->Color = clRed;

 Canvas->Ellipse(-100, -100, 100, 100);

 Canvas->Pen->Color = clBlue;

 Canvas->MoveTo (-300, 0);

 Canvas->LineTo(300, 0);

 Canvas->MoveTo(0, -200);

 Canvas->LineTo(0, 200);

 Canvas->Pen->Color = clFuchsia;

 Canvas->MoveTo (0, 0);

 Canvas->LineTo(150, 150);

}

MM_LOENGLISH, like other map modes (except for the MM_TEXT shown above),

performs two operations. It reverses the direction of the vertical axis: the yaxis shifts

upward from (0, 0):

file:///D:/Work/Innovative%20Academy/Innovative%20Academy%20journals/EJAR/Main%20documents%20-%20Asosiy%20fayllar/www.in-academy.uz

EURASIAN JOURNAL OF MATHEMATICAL
THEORY AND COMPUTER SCIENCES

Innovative Academy Research Support Center
IF = 9.206 www.in-academy.uz/index.php/ejmtcs

Volume 6 Issue 01, January 2026 11 ISSN 2181-2861

Also, each unit of measurement is multiplied by 0.01 inches, meaning the units are

scaled down from the specified measurements. Consider the effect of the

MM_LOENGLISH map mode on the above OnPaint event.

void __fastcall TForm1::Button1Click(TObject *Sender)

{

 HDC hDC = this->Canvas->Handle; SetMapMode(hDC, MM_LOENGLISH);

 SetViewportOrgEx(hDC, 300, 200, NULL);

 Canvas->Pen->Color = clRed;

 Canvas->Ellipse(-100, -100, 100, 100);

 Canvas->Pen->Color = clBlue;

 Canvas->MoveTo(-300, 0);

 Canvas->LineTo(300, 0);

 Canvas->MoveTo(0, -200);

 Canvas->LineTo(0, 200);

 Canvas->Pen->Color = clFuchsia;

 Canvas->MoveTo (0, 0);

 Canvas->LineTo(150, 150);

}

As you can see, the lines are now drawn with the positive and negative directions of

the axes taken into account, which fulfills the requirements of the Cartesian system. At the

same time, the lengths we used have been shortened, the circle is smaller, and the lines

are shorter.

file:///D:/Work/Innovative%20Academy/Innovative%20Academy%20journals/EJAR/Main%20documents%20-%20Asosiy%20fayllar/www.in-academy.uz

EURASIAN JOURNAL OF MATHEMATICAL
THEORY AND COMPUTER SCIENCES

Innovative Academy Research Support Center
IF = 9.206 www.in-academy.uz/index.php/ejmtcs

Volume 6 Issue 01, January 2026 12 ISSN 2181-2861

Like the MM_LOENGLISH map mode, MM_HIENGLISH also corrects the orientation

(actually, I shouldn't use the word "corrects," since I can assume MM_TEXT is an anomaly;

(the map modes are provided so you can choose the direction you want at) shifts upward

from the vertical axis (0, 0). Besides MM_LOENGLISH, the MM_HIENGLISH map mode

scales each unit down by

0.001 inches, which can be significant and change the drawing appearance. Here is

its effect: void __fastcall TForm1::Button10Click(TObject *Sender)

{

 HDC hDC = this->Canvas->Handle; SetMapMode(hDC, MM_HIENGLISH);

 SetViewportOrgEx(hDC, 300, 200, NULL);

 Canvas->Pen->Color = clRed;

 Canvas->Ellipse(-100, -100, 100, 100);

 Canvas->Pen->Color = clBlue;

 Canvas->MoveTo (-300, 0);

 Canvas->LineTo(300, 0);

 Canvas->MoveTo(0, -200);

 Canvas->LineTo(0, 200);

 Canvas->Pen->Color = clFuchsia;

 Canvas->MoveTo (0, 0);

 Canvas->LineTo(150, 150);

}

Notice that we are still using the same dimensions for the lines and the circle.

 The MM_LOMETRIC map mode uses the same axis orientation as the previous two

modes. On the other hand, MM_LOMETRIC multiplies each unit by 0.1 millimeters. This

means that each unit is reduced by 10%. Example:

void __fastcall TForm1::Button1Click(TObject *Sender)

{

 HDC hDC = this->Canvas->Handle; SetMapMode(hDC, MM_LOMETRIC);

SetViewportOrgEx(hDC, 300, 200, NULL);

 Canvas->Pen->Color = clRed;

 Canvas->Ellipse(-100, -100, 100, 100);

 Canvas->Pen->Color = clBlue;

 Canvas->MoveTo (-300, 0);

 Canvas->LineTo(300, 0);

 Canvas->MoveTo(0, -200);

 Canvas->LineTo(0, 200);

 Canvas->Pen->Color = clFuchsia;

 Canvas->MoveTo (0, 0);

 Canvas->LineTo(150, 150);

}

The MM_HIMETRIC map mode uses the same orientation as the three modes above.

Its units are obtained by multiplying each of the given units by 0.01 millimeters. Example:

void __fastcall TForm1::Button1Click(TObject *Sender)

file:///D:/Work/Innovative%20Academy/Innovative%20Academy%20journals/EJAR/Main%20documents%20-%20Asosiy%20fayllar/www.in-academy.uz

EURASIAN JOURNAL OF MATHEMATICAL
THEORY AND COMPUTER SCIENCES

Innovative Academy Research Support Center
IF = 9.206 www.in-academy.uz/index.php/ejmtcs

Volume 6 Issue 01, January 2026 13 ISSN 2181-2861

{

 HDC hDC = this->Canvas->Handle;

 SetMapMode(hDC, MM_HIMETRIC);

 SetViewportOrgEx(hDC, 300, 200, NULL);

 Canvas->Pen->Color = clRed;

 Canvas->Ellipse(-100, -100, 100, 100);

 Canvas->Pen->Color = clBlue;

 Canvas->MoveTo(-300, 0);

 Canvas->LineTo(300, 0);

 Canvas->MoveTo(0, -200);

 Canvas->LineTo(0, 200);

 Canvas->Pen->Color = clFuchsia;

 Canvas->MoveTo(0, 0);

 Canvas->LineTo(150, 150);

}

Matching units and coordinate systems

The map modes we have used so far have allowed us to select the orientation of the

axes, especially the y-axis. Furthermore, we have been unable to apply any unit

conversion to the dimensions shown in our drawings. This is because each of these

mapping modes (MM_TEXT,

MM_HIENGLISH, MM_LOENGLISH, MM_HIMETRIC, MM_LOMETRIC, and

MM_TWIPS) have hard-coded attributes, such as the orientation of their axes and

how they convert the dimensions passed to them. What if you want to control the

direction and/or conversion of the axes used in the dimensions you draw (have you ever

used AutoCAD?).

Consider the following scenario. It is drawing a 200x200 pixel square with a red

border and an aqua background. The square starts at (100, 100) on the negative side of

both axes and continues to (100, 100) on the positive side of both axes. For a better

illustration, the event also draws a 45º diagonal line starting from the origin (0, 0):

//-- ----------------------------------- void __fastcall

TForm1::Button2Click(TObject *Sender){

 // Draw a red-bordered square. aqua background

 Canvas->Pen->Color = clRed;

 Canvas->Brush->Color = clAqua;

 Canvas->Rectangle(-100, -100, 100, 100);

 Canvas->Pen->Color = clBlue;

 // Start from the origin for a 45-degree diagonal line (0, 0)

 Canvas->MoveTo(0, 0);

 Canvas->LineTo (200, 200);

} 0

//--- --------------------------------- we will take only the

bottom right 3/4 of the square.

file:///D:/Work/Innovative%20Academy/Innovative%20Academy%20journals/EJAR/Main%20documents%20-%20Asosiy%20fayllar/www.in-academy.uz

EURASIAN JOURNAL OF MATHEMATICAL
THEORY AND COMPUTER SCIENCES

Innovative Academy Research Support Center
IF = 9.206 www.in-academy.uz/index.php/ejmtcs

Volume 6 Issue 01, January 2026 14 ISSN 2181-2861

Imagine you want the origin (0, 0) to be placed in the middle of the shape, or more

precisely, to place the origin at (340, 220). The solution is to use the SetViewportOrgEx()

function. Example

(we are not showing map mode, since MM_TEXT can be used as the standard for us)

//-- ----------------------------------- void __fastcall

TForm1::FormPaint(TObject *Sender)

{ HDC hDC = Canvas->Handle; // set the form to Height = 340 and Width = 220

SetViewportOrgEx(hDC, 340, 220, NULL);

 // Draw a red border and an aqua-filled square

 Canvas->Pen->Color = clRed;

 Canvas-> Brush-> Color = clAqua;

 Canvas->Rectangle(-100, -100, 100, 100);

 Canvas->Pen->Color = clBlue;

 // Start from the origin (0, 0) for a 45-degree diagonal line

 Canvas->MoveTo(0, 0);

 Canvas->LineTo (200, 200);

}

//--- --------------------------------

Use the MM_ISOTROPIC or MM_ANISOTROPIC map modes to control the change of

your unit system, the direction of the axes, and the units used in your application.

The first thing you need to do is call the SetMapMode() function and specify one of these

two map modes.

Example:

//-- ----------------------------------- void __fastcall

TForm1::FormPaint(TObject *Sender)

{

 HDC hDC = Canvas->Handle;

 SetMapMode(hDC, MM_ISOTROPIC);

 SetViewportOrgEx(hDC, 340, 220, NULL);

 // Draw a red bordered square with an aqua background

 Canvas->Pen->Color = clRed;

 Canvas->Brush->Color = clAqua;

 Canvas->Rectangle (-100, -100, 100, 100);

 Canvas->Pen->Color = clBlue;

 // Start from the origin (0, 0) for a 45-degree diagonal line

 Canvas->MoveTo(0, 0);

 Canvas->LineTo (200, 200);

}

//--- ---------------------------------

As a result of the above program, after you call the SetMapMode() function with

MM_ISOTROPIC (or MM_ANISOTROPIC) as an argument, you don't have to stop

there. The purpose of these two map modes is to allow you to control the orientation of

the axes and the unit conversions. Therefore, after calling SetMapMode() and specifying

file:///D:/Work/Innovative%20Academy/Innovative%20Academy%20journals/EJAR/Main%20documents%20-%20Asosiy%20fayllar/www.in-academy.uz

EURASIAN JOURNAL OF MATHEMATICAL
THEORY AND COMPUTER SCIENCES

Innovative Academy Research Support Center
IF = 9.206 www.in-academy.uz/index.php/ejmtcs

Volume 6 Issue 01, January 2026 15 ISSN 2181-2861

MM_ISOTROPIC (or MM_ANISOTROPIC), you must call SetWindowExtEx(). This function

specifies how much each new unit is multiplied by to get the old or standard unit value.

The syntax for the SetWindowExtEx() function is:

BOOL SetWindowExtEx(HDC hdc, int nXExtent, int nYExtent, LPSIZE lpSize);

Once again, the first argument of this function is the handle mentioned above. The

second argument, nXExtent, specifies the maximum logical value of the horizontal axis.

The third argument, nYExtent, specifies the maximum logical value of the vertical axis .

The last argument, lpSize, is a pointer to the SIZE structure that stores the previous x and

y values. If this argument is NULL, the argument is ignored. Example:

//-- ----------------------------------- void __fastcall

TForm1::Button14Click(TObject *Sender

{

 HDC hDC = Canvas->Handle;

 SetMapMode(hDC, MM_ISOTROPIC);

 SetViewportOrgEx(hDC, 340, 220, NULL);

SetWindowExtEx(hDC, 480, 480, NULL);

 // Draw a square with a red border and aqua fill

 Canvas->Pen->Color = clRed;

 Canvas-> Brush-> Color = clAqua;

 Canvas->Rectangle(-100, -100, 100, 100);

 Canvas->Pen->Color = clBlue;

 //45-degree diagonal line starting from the origin (0, 0)

 Canvas->MoveTo(0, 0);

 Canvas->LineTo(120, 120);

}

References:

1. Stanley Lippman. The C++ Language. Basic Course. Williams - M.: 2014.

2. Siddhartha Rao. Master C++ on Your Own in 21 Days. Williams - Moscow: 2013. 3.

Nikita Kulytin. Microsoft Visual C++ in Problems and Examples. BHV St. Petersburg - St.

Petersburg.: 2010.

file:///D:/Work/Innovative%20Academy/Innovative%20Academy%20journals/EJAR/Main%20documents%20-%20Asosiy%20fayllar/www.in-academy.uz

EURASIAN JOURNAL OF MATHEMATICAL
THEORY AND COMPUTER SCIENCES

Innovative Academy Research Support Center
IF = 9.206 www.in-academy.uz/index.php/ejmtcs

Volume 6 Issue 01, January 2026 16 ISSN 2181-2861

3. B. Stroustrup. The C++ Programming Language. Special Edition. - M.: OOO "Bionom-

Press", 2006. - 1104 pp.

4. Pavlovskaya T.A. C++: High-Level Language Programming – St. Petersburg: Piter.

2005. - 461 pp.

5. Sh. F. Madraximov, C.M. Gaynazarov. Fundamentals of Programming in C++. T. 2009.

6. FunctionX Tutorials (https://www.functionx.com)

file:///D:/Work/Innovative%20Academy/Innovative%20Academy%20journals/EJAR/Main%20documents%20-%20Asosiy%20fayllar/www.in-academy.uz
https://www.functionx.com/
https://www.functionx.com/
https://www.functionx.com/

