THE ROLE OF NANOSTRUCTURED MATERIALS IN ENHANCING ENERGY EFFICIENCY AND THEIR APPLICATION IN AEROSPACE ENGINEERING
Main Article Content
Аннотация:
This article highlights the role of nanostructured materials in improving energy efficiency, their applications in aerospace engineering, and their significance for sustainable development. The high mechanical strength, thermal stability, and functional properties of nanomaterials have enabled their widespread use in aerospace technologies. Research indicates that employing nanostructured materials represents a strategic direction in reducing energy consumption and minimizing negative environmental impacts.
Article Details
Как цитировать:
Библиографические ссылки:
ACS. (2025). A Broad Perspective on Nanoscale Materials for Energy. ACS Applied Energy Materials. (American Chemical Society Publications)
Gohar, O., et al. (2024). Nanomaterials for advanced energy applications: Recent advances. Journal of Energy Materials. (ScienceDirect)
Mohammed, H., et al. (2025). Nanomaterials in Energy Storage Systems—A Review. Molecules, 30(4), 883. (MDPI)
Lu, P., Yang, T., Gao, T., Xia, C., & Yu, F. (2023). Application of New Materials in Aerospace Thermal Management. Beijing Institute of Space Mechanics and Electricity Review. (madison-proceedings.com)
Wang, J., et al. (2024). Interfacial and Filler Size Effects on Mechanical/Thermal/Electrical Properties of CNT-reinforced Nanocomposites. PMC, article. (PMC)
Yang, H., et al. (2025). High-Thermal-Conductivity Graphene/Epoxy Resin Composites. Polymers, 17(17). (MDPI)
Rani, A., et al. (2018). A review on the progress of nanostructure materials for energy harnessing and environmental remediation. Journal of Environmental Nanotechnology, etc. (SpringerLink)
Goyal, V., & Balandin, A. A. (2012). Thermal Properties of the Hybrid Graphene-Metal Nano-Micro-Composites: Applications in Thermal Interface Materials. arXiv. (arXiv)
“Microscopic mechanism of tunable thermal conductivity in carbon nanotube-geopolymer nanocomposites.” (2023). arXiv preprint. (arXiv)
DRPress. (2023). Nanomaterials in Aerospace: Advancements, Applications, Challenges, and Future Trajectories. HSET Journal. (drpress.org)
Pendashteh, A., Li, X., & Wu, Y. (2024). Opportunities for nanomaterials in more sustainable aviation. Science of the Total Environment, 940, 164841. https://doi.org/10.1016/j.scitotenv.2024.164841 (PMC)
Nóbrega, G., Silva, A., & Ferreira, L. (2024). A review of novel heat transfer materials and fluids for aerospace applications. Aerospace, 11(4), 275. https://doi.org/10.3390/aerospace11040275 (MDPI)
Bock, F. E., Wolff, M., & White, R. G. (2021). Hybrid modelling by machine learning corrections: Improving low-prediction errors in physics-based models. Proceedings of the National Academy of Sciences, PMC Article. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069582/ (PMC)
George, K., Kannan, S., Raza, A., & Pervaiz, S. (2021). A hybrid finite element—machine learning backward training approach to analyze the optimal machining conditions. Materials, 14(21), 6717. https://doi.org/10.3390/ma14216717 (MDPI)
Kurz, S., De Gersem, H., Galetzka, A., Klaedtke, A., Liebsch, M., Russenschuck, S., … Schmidt, M. (2022). Hybrid modeling: towards the next level of scientific computing. Journal of Mathematics in Industry, 12, Article 8. https://mathematicsinindustry.springopen.com/articles/10.1186/s13362-022-00123-0 (SpringerOpen)
Xiao, Y., Chen, Q., Ma, D., Yang, N., & Hao, Q. (2019). Phonon transport within periodic porous structures — From classical phonon size effects to wave effects. arXiv preprint. https://arxiv.org/abs/1910.04913 (arXiv)
Xu, Y., Kraemer, D., Song, B., Zhou, Z., Loomis, J., Wang, J., … Li, M. (2017). Nanostructured polymer films with metal-like thermal conductivity. arXiv preprint. https://arxiv.org/abs/1708.06416 (arXiv)
Goyal, V., & Balandin, A. A. (2012). Thermal properties of the hybrid graphene-metal nano-micro-composites: applications in thermal interface materials. arXiv preprint. https://arxiv.org/abs/1202.0330 (arXiv)
Shahil, M. F., & Balandin, A. A. (2012). Graphene-based nanocomposites as highly efficient thermal interface materials. arXiv preprint. https://arxiv.org/abs/1201.0796 (arXiv)r.
