

ARTICLE INFO

Received: 31st January 2026
Accepted: 5th February 2026
Published: 12th February 2026

KEYWORDS

Type 2 diabetes mellitus, obesity, insulin resistance, metabolic syndrome, cardiovascular disease, dyslipidemia.

ANALYSIS OF CHANGES IN METABOLIC SYNDROME, TREATMENT TACTICS, AND THE NEED AND IMPORTANCE OF IMPROVING PHARMACOTHERAPY

Sokhib Rashidov Zamon ugli

Abrorbek Pirmanov Akbarali ugli

Department of pharmacology of the Tashkent State Medical University

<https://doi.org/10.5281/zenodo.18618256>

ABSTRACT

Insulin resistance, abdominal obesity, dyslipidemia, and hypertension are among the many interrelated risk factors that define metabolic syndrome, a complex metabolic disease. Together, these factors put people at higher risk for T2DM and CVD. Globally, metabolic syndrome has become more common as obesity and sedentary lifestyles have increased. The pathophysiology of metabolic syndrome is examined in this review, with a focus on how it contributes to the onset and advancement of T2DM and CVD. The significant public health burden that metabolic syndrome poses is shown by epidemiological statistics, which calls for efficient care and prevention measures. The usefulness of the existing screening instruments and diagnostic criteria in clinical practice is highlighted. Management methods encompass lifestyle adjustments, medication, and surgical therapies, each targeting distinct components of metabolic syndrome to decrease cardiovascular and metabolic risks. Emerging research directions to improve prevention and treatment outcomes are discussed along with the difficulties in detecting and treating metabolic syndrome. This study attempts to help healthcare professionals optimize patient care and advance public health measures to combat this prevalent syndrome by clarifying the complex link between metabolic syndrome, CVD, and type 2 diabetes. Metabolic syndrome stands alone as a risk factor for numerous adverse health consequences. To lower cardiovascular risk and avoid diabetes and its complications, each of its constituent parts should be managed with medication and behavioral modifications. The treatment of the illness itself requires further investigation. Although more research is required on how to treat metabolic syndrome as opposed to its components, a diagnosis of the condition may be helpful in encouraging patients to make lifestyle adjustments.

Introduction. Hypertension, central obesity, insulin resistance, and dyslipidemia are among the metabolic abnormalities that define metabolic syndrome (MetS). Both acquired and inherited variables contribute to the final pathway of inflammation in the pathophysiology of MetS. Drug therapy aims to treat individual components of MetS; lifestyle changes and risk factor modifications are helpful in early diagnosis. It has been demonstrated that certain nutraceuticals are beneficial in treatment. The purpose of this review is to provide an overview of the pathophysiology, epidemiology, and function of inflammation in MetS. Additionally, this review aims to provide an overview of the novel elements of MetS

prevention and therapy, the implications of foods and food components, and the diagnostic procedures used to diagnose the disease. The metabolic syndrome is a collection of related metabolic disorders that raises the risk of type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD) considerably. Insulin resistance or glucose intolerance, abdominal obesity, dyslipidemia (high triglycerides, low HDL cholesterol), and hypertension are the hallmarks of this syndrome [1-5]. A person is usually considered to have metabolic syndrome if they have any three of these five characteristics. The International Diabetes Federation (IDF) and the National Cholesterol Education Program (NCEP) are two organizations that have developed diagnostic criteria for metabolic syndrome. These criteria may differ slightly but typically highlight the same key risk factors. Globally, metabolic syndrome has become an epidemic, presenting a serious public health concern. Its frequency varies among groups and is impacted by lifestyle choices, age, and ethnicity. According to estimates, metabolic syndrome affects about one-third of adults in the US, and prevalence rates rise with age. Globally, similar patterns are seen, especially in industrialized and urbanized areas where sedentary lifestyles and high-calorie meals are more prevalent. The growing frequency coincides with rising obesity and sedentary lifestyle rates, underscoring the pressing need for efficient public health measures. Because metabolic syndrome is strongly linked to an increased risk of developing peripheral vascular disease, coronary artery disease, stroke, and type 2 diabetes, it is imperative to understand it [6-11]. Diabetes problems and unfavorable cardiovascular events are more likely to occur in those with metabolic syndrome. The pathophysiology of atherosclerosis and chronic hyperglycemia, which are essential processes in CVD and type 2 diabetes, respectively, are directly influenced by the syndrome's constituents, such as insulin resistance and dyslipidemia. Therefore, treating metabolic syndrome can greatly lessen the burden of these long-term illnesses. The goal of this study is to thoroughly investigate the risk factors, processes, and management approaches related to metabolic syndrome. This review is to offer a comprehensive knowledge of the intricate interactions among metabolic syndrome, CVD, and type 2 diabetes by combining the most recent research and clinical data, emphasizing the implications for clinical practice and public health campaigns. In order to improve prevention and treatment methods for metabolic syndrome and its related disorders, this review will also point out knowledge gaps and recommend future lines of inquiry [12-17]. The metabolic syndrome, which is defined by a number of metabolic abnormalities such as insulin resistance, central obesity, hypertension, and dyslipidemia, increases the risk of developing type II diabetes mellitus and atherosclerotic cardiovascular illnesses. Three or more of these metabolic abnormalities must be present for metabolic syndrome to be diagnosed, indicating the urgent need for proactive detection and intervention techniques. Over one-fifth of Americans and Europeans presently suffer from metabolic syndrome, a condition whose prevalence has alarmingly increased in recent decades in tandem with the global rise in obesity rates. This exercise describes the various difficulties that metabolic syndrome presents and highlights how important interdisciplinary cooperation is to managing it. Participants acquire thorough knowledge and useful skills to successfully reduce the cardiovascular risks and metabolic complications linked to this syndrome by incorporating insights from clinicians, including cardiologists, internists, dietitians, pharmacists, and other medical specialists. Clinicians are empowered to implement significant change and enhance outcomes for patients dealing with metabolic syndrome and its related comorbidities through evidence-based therapies, such as medication and lifestyle changes [18-23].

The main purpose of this brief review is to analyze current measures based on authoritative scientific papers on the changes that occur in the syndrome, the need and importance of treatment tactics and the improvement of pharmacotherapy.

Cardiovascular disease and metabolic syndrome. There are several ways that metabolic syndrome and cardiovascular disease are related, making metabolic syndrome a substantial

risk factor for CVD. It causes atherosclerosis by a number of mechanisms, such as oxidative stress, inflammation, and insulin resistance. Insulin resistance promotes atherogenic processes by causing dyslipidemia, low HDL cholesterol, and increased triglycerides. Furthermore, metabolic syndrome-related chronic low-grade inflammation exacerbates atherosclerosis by impairing vasodilation, increasing arterial stiffness, and causing endothelial dysfunction. People with metabolic syndrome frequently have elevated levels of pro-inflammatory cytokines such TNF- α and IL-6. These cytokines raise the risk of CVD events by causing vascular inflammation and damage, which accelerates the development of atherosclerosis. In metabolic syndrome, an excess of reactive oxygen species (ROS) causes oxidative stress, which harms endothelial cells and encourages the development of plaque in arteries [7-12]. Additionally, lipoproteins, including oxidized low-density lipoproteins (LDL), which are especially atherogenic, can be altered by this oxidative environment. Myocardial infarction (MI) and stroke are considerably more likely to occur in those with metabolic syndrome. According to studies, those with metabolic syndrome had a twofold increased risk of CVD events, such as MI and stroke, as compared to people without the syndrome. Because metabolic syndrome is linked to a hypercoagulable condition, which raises the risk of thrombus formation that might result in MI or stroke, one of the mechanisms is increased thrombotic risk [17-24]. Due in large part to the underlying atherosclerotic alterations and endothelial dysfunction, epidemiological studies have demonstrated that patients with metabolic syndrome have increased incidence of acute coronary syndromes and cerebrovascular accidents. It is also commonly known that cardiac failure and metabolic syndrome are related. Heart failure is the result of diastolic dysfunction and left ventricular hypertrophy, which are caused by the syndrome's constituents, including diabetes and hypertension. Those who have both metabolic syndrome and pre-existing cardiovascular disease are at an increased risk of developing heart failure. Numerous studies have shown that metabolic syndrome and cardiovascular disease are strongly associated. According to research, metabolic syndrome is linked to a 1.5-fold increase in all-cause mortality and a 2-fold increase in the risk of CVD. Globally, the prevalence of metabolic syndrome is increasing in tandem with the rise in obesity and sedentary lifestyles, both of which raise the risk of cardiovascular disease. Even in people without diabetes, metabolic syndrome is a reliable indicator of future cardiovascular events, according to long-term research like the Framingham Heart Study [26-33].

Techniques for management and therapy. In order to lower the risk of CVD and type 2 diabetes, metabolic syndrome must be well managed. This all-encompassing strategy takes into account developing therapies, pharmaceutical treatments, surgical procedures, and lifestyle changes. The cornerstone of controlling metabolic syndrome is altering one's lifestyle. A balanced diet full of fruits, vegetables, whole grains, lean meats, and healthy fats is the main goal of dietary interventions. Diets like the DASH (Dietary Approaches to Stop Hypertension) and Mediterranean diets are frequently advised. Promoting weight reduction and sustaining a healthy weight while reducing processed meals, sugar-sweetened beverages, and trans fats requires careful calorie monitoring. In addition to helping with weight management, portion control and mindful eating techniques can help avoid overeating. In addition to muscle-strengthening exercises two or more days a week, physical activity standards recommend at least 150 minutes of moderate-intensity aerobic exercise per week, such as brisk walking or cycling. Increasing everyday exercise, like going for a stroll or using the stairs, also improves general health [11-19]. With a goal of 5-10% body weight decrease, weight loss is essential for improving metabolic parameters. Achieving and sustaining weight loss can be facilitated by behavioral techniques like goal-setting, self-monitoring, and support groups. To manage certain aspects of metabolic syndrome, pharmacological interventions can be required. Antihyperglycemic medications like metformin are first-line therapy for insulin resistance and glycemic management. Surgical procedures, particularly bariatric surgery, may be necessary

in specific circumstances. For people with a BMI of 35 or more who have not lost a significant amount of weight through lifestyle modifications, this option is usually advised. Procedures including adjustable gastric banding, sleeve gastrectomy, and gastric bypass can result in significant weight loss, better metabolic outcomes, and a lower risk of CVD and T2DM. Future directions and new treatments for metabolic syndrome are encouraging. Novel pharmacotherapies that target inflammation, lipid metabolism, and insulin resistance are still being researched. The effectiveness of treatment may be improved by using personalized medicine techniques to customize therapies according to phenotypic and genetic characteristics. Better monitoring of dietary, metabolic, and physical activity metrics is also made possible by the growth of digital health solutions, such as wearable devices and applications. Adherence to lifestyle changes may also be improved by enhanced behavioral interventions, especially those that use cognitive-behavioral techniques [24-33].

The Prevention and Treatment of MetS Involves New Aspects. Metabolomics and Gender Medicine. How to customize medical nutrition therapy for specific patients within MetS populations has been the subject of a steady stream of research in recent years. Gender-specific clinical outcomes in overweight, pre-diabetic patients after an 8-week fixed, low-energy diet (LED) were examined in a research by Christesen et al. A normalized z-score was derived from a new equation that included all five of the variables that Alberti et al. identified as MetS. Even after controlling for variations in percentage weight loss, men demonstrated greater decreases in body weight, C-peptide levels, fat mass (FM), and MetS z-score than women. However, women showed an unfavorable decrease in bone mineral content (BMC), fat-free mass (FFM), and HDL-C [4-9]. In terms of metabolomics, Geidenstam et al. discovered that a 1-year non-surgical weight loss program was associated with lower levels of methyladenosine, alanine, proline, trans-cinnamic acid, tyrosine, and BCAA in the serum as well as baseline xylitol levels in the serum, which were predictive of achieving $\geq 10\%$ weight loss. To predict future weight gain, the same investigators developed a metabolic risk score based on 42 metabolites linked to a change in BMI in a different study. In particular, a lower weight gain was linked to a rise in the levels of 35 metabolites, while a bigger weight gain was linked to the remaining seven metabolites. The likelihood of future weight gain was finally determined to be predicted by eight metabolites, notably triacylglycerol 56:6 and 56:2, malate, niacinamide, sphingomyelin 24:0, uridine, tyrosine, and xanthine. This score had a high positive connection with insulin sensitivity markers and a negative correlation with the risk of type 2 diabetes, but the model's variation was not entirely explained by anthropometric, lifestyle, and glycemic predictors [14-20].

Directions for future research. As our knowledge of metabolic syndrome grows, more research is needed in a few crucial areas to enhance care, diagnostic, and prevention techniques. The discovery of new biomarkers is one possible approach. Finding novel biomarkers can improve metabolic syndrome and related problems' early diagnosis and surveillance. To find particular proteins, metabolites, or genetic markers connected to metabolic syndrome, researchers can use cutting-edge technologies like proteomics, metabolomics, and genomics. Furthermore, examining gut microbiome profiles, adipokines, and inflammatory markers may identify signs of metabolic dysregulation. Timely therapies can reverse or stop the progression of metabolic syndrome if at-risk patients are identified early. Future studies must also focus on comprehending the genetic and epigenetic factors that contribute to metabolic syndrome. It can be instructive to look into the ways that epigenetic changes and genetic predispositions lead to the development of metabolic syndrome [4-12]. Genetic variations linked to metabolic syndrome can be found with the aid of genome-wide association studies (GWAS). Furthermore, we can learn more about the illness by investigating how epigenetic variables—including DNA methylation and histone modification—affect metabolic regulation and reactions to environmental factors like stress and food. With this information, interventions might be customized according to each

person's unique genetic and epigenetic profile, resulting in more individualized preventative and treatment plans. Another interesting line of inquiry is the investigation of novel therapeutic targets. Clinical results could be greatly enhanced by finding and confirming novel therapeutic targets for the treatment of metabolic syndrome and associated consequences. Researchers ought to look into new mechanisms related to inflammation, lipid metabolism, and insulin signaling. Furthermore, investigating the potential of pharmaceuticals that target particular metabolic pathways—such as SGLT2 inhibitors, GLP-1 receptor agonists, and novel anti-inflammatory medications—may result in the creation of more potent therapies [17-21]. These novel treatments have the potential to improve the efficacy of current regimens and offer patients who don't react to current drugs options. Lastly, to comprehend the long-term efficacy of different metabolic syndrome therapies, longitudinal research on prevention and management outcomes is crucial. It will be crucial to conduct extensive cohort studies that monitor pharmaceutical therapies, lifestyle modifications, and their effects on the development of metabolic syndrome and associated health outcomes. The long-term impacts of dietary and activity modifications on cardiovascular health and the prevalence of type 2 diabetes should be evaluated by researchers. Longitudinal data can help guide clinical treatment in managing metabolic syndrome, educate public health policies, and shed light on how sustainable interventions are [26-31].

Discussion. Due to the challenge of developing uniform criteria for metabolic syndrome (MetS), the definition has changed multiple times throughout the years. Almost always, a pro-inflammatory state associated with altered glucose metabolism underlies the problems associated with MetS, which may increase the risk of cardiovascular disease. In fact, type 2 diabetes (T2D) and cardiovascular diseases (CVDs) are directly linked to MetS. It has been noted that intricate relationships between food, genetics, and human microbiome influence the propensity to develop metabolic syndrome. The last ten years of research on three main topics of MetS are summarized in this review: (i) the definition and classification of the syndrome, its pathophysiology, and treatment approaches; (ii) the diagnosis and prediction of the biomarkers found using sophisticated techniques (NMR, LC/GC-MS, and LC, LC-MS); and (iii) the role of foods and food components in the prevention and/or treatment of MetS, indicating a potential role of particular food intake in the development of MetS [5-11]. Last but not least, classifying patients based on their metabolic phenotype—which includes postprandial insulin or glucose levels, plasma lipoprotein and fatty acid profiles, and cardiometabolic biomarkers—may help predict how well nutrition therapy will work clinically. Treatment of this clinical syndrome and its constituents may lessen and, ideally, avoid chronic metabolic problems and CVD death because MetS is a constellation of CVD risk factors. Measurements of a few basic indicators, including WC, blood pressure, HDL-C, triglyceridemia, and blood glucose, are frequently used to diagnose MetS. Numerous metabolites that change with MetS or its constituent parts can be found utilizing a metabolomic approach that makes use of NMR spectroscopy and/or chromatographic techniques. Consequently, the state of patients with MetS may be defined and predicted using these molecular biomarkers. The impact and therapeutic potential of various nutrients, food ingredients, or a mix of both, as well as various dietary patterns, have been investigated thus far in the treatment of MetS [8-11]. Because of their convenient availability and advantageous qualities, some of the numerous nutraceutical substances already in use could be included as supplements in a regular diet. No particular dietary strategy for overall MetS therapy has been investigated, despite the fact that a number of nutrients have been demonstrated to combat the individual MetS components. The role of the gut microbiota and how prebiotics and probiotics affect it have garnered a lot of attention lately. This could help develop new treatment strategies for the metabolic changes that cause MetS and offer fresh perspectives on the pathophysiology of the disease. Moreover, we can conclude from the data that consuming polyphenols may have positive and protective effects on MetS. Researchers should

conduct more research to learn more about the health impacts of polyphenols. The development of polyphenol supplementation strategies to optimize health effects may benefit from such discoveries [15-21].

Conclusion. To sum up, metabolic syndrome is a serious and expanding public health issue that is closely associated with a higher risk of CVD and type 2 diabetes. This group of metabolic disorders, which includes central obesity, insulin resistance, dyslipidemia, and hypertension, is a leading cause of morbidity and mortality globally. It is essential to comprehend the risk factors and mechanisms that underlie metabolic syndrome in order to create prevention and management plans that work. Public health campaigns, medication treatments, and lifestyle changes are essential for reducing the negative effects of metabolic syndrome on both individual and population health. The incidence of CVD and T2DM can be decreased by using comprehensive care strategies that take into account the complex nature of metabolic syndrome. This will ultimately improve the health and quality of life of those who are impacted. To improve our knowledge of metabolic syndrome and create novel treatments and interventions, further research is necessary. By working together in research, clinical practice, and public health policy, we may significantly advance our fight against this widespread syndrome and its related sequelae.

References:

1. Dhondge RH, Agrawal S, Patil R, Kadu A, Kothari M. A Comprehensive Review of Metabolic Syndrome and Its Role in Cardiovascular Disease and Type 2 Diabetes Mellitus: Mechanisms, Risk Factors, and Management. *Cureus*. 2024 Aug 21;16(8):e67428. doi: 10.7759/cureus.67428.
2. Metabolic syndrome in Indian tribes: challenges to reveal its true status. Shrivastava S, Singh K, Chakma T, Kavishwar A. *Front Clin Diabetes Healthc*. 2023;4:1194471. doi: 10.3389/fcdhc.2023.1194471.
3. Aripov A.N., Aripov O.A., Akhundjanova L.L., Nabiev A.U., Nabieva D.A., & Khamroev T.T. (2022). Study the effect of yantacin on some indicators of cellular renewal and on the level of protein expression on rat hepatocytes in chronic heliotrine liver damage. *International Journal of Medical Sciences And Clinical Research*, 2(05), 06–13. <https://doi.org/10.37547/ijmscr/Volume02Issue05-02>.
4. Aripov A. N, Akhunzhanova L. L, Nabiev A. U, Aripov A. O, Khamroev T. T.. Antifibrotic Efficacy of a New Phytocomposition of Essential Phospholipids with Glycyrrhizic Acid, Ecdysterone, Lycopene and Proanthacyanidin in Experimental Severe Chronic Hepatitis Compared with Phosphogliv. *Biomed Pharmacol J* 2023;16(3).Pages : 1815-1825. DOI : <https://dx.doi.org/10.13005/bpj/2761>
5. Metabolic syndrome: risk factors, diagnosis, pathogenesis, and management with natural approaches. Mohamed SM, Shalaby MA, El-Shiekh RA, El-Banna HA, Emam SR, Bakr AF. *Food Chemistry Advances*. 2023;3:100335.
6. Aripov A.N, Akhunjanova L.L, Khamroev T.T, Aripov Abdumalik Nigmatovich, Akhunjanova Lola Lazizovna, & Khamroev Tolmas Tolibovich. (2022). Differential Analysis of Chronic Toxic Hepatitis Caused by The Introduction of Heliotrin Solution in Various Ways. *Texas Journal of Medical Science*, 4, 58–62. Retrieved from <https://zienjournals.com/index.php/tjms/article/view/670>
7. Adipose tissue inflammation and metabolic dysfunction in obesity. Kawai T, Autieri MV, Scalia R. *Am J Physiol Cell Physiol*. 2021;320:0–91. doi: 10.1152/ajpcell.00379.2020.
8. Rashidov S.Z., Rakhimboev S.D., Sanoev Z.I., Abdinazarov I.T., Khamroev T.T., Ismailova D.S., & Elmuradov B.J.. (2022). Study of psychoactive activity potassium salt 5-(o-aminophenyl)-1,3,4- oxadiazole-2-thion (D-361). *International Journal of Medical Sciences And Clinical Research*, 2(09), 1–5. <https://doi.org/10.37547/ijmscr/Volume02Issue09-01>

9. Арипов А.Н., Арипов О.А., Ахунджанова Л.Л., Набиев А.Ў., Нишанбаев С.З., Набиева Д.А., Ҳамроев Т.Т. Тажриба шароитида сафорофлавонолозиднинг гепатотроп фаолигини ўрганиш. Oriental Journal of Medicine and Pharmacology, 2(02), 55–64. <https://doi.org/10.37547/supsci-ojmp-02-02-07>

10. Zakhidova L.T., Saidkhodjaeva D.M., Sanoev Z.I., Tukhtasheva V.F., Rakhmanova H.A., Hamroyev T.T. Toxicological Characteristics Of N-Deacetylappaconitine Under Chronic Administration In White Rats. The American Journal of Applied Sciences, 3(03), 34-41. <https://doi.org/10.37547/tajas/Volume03Issue03-06>

11. Sandsdal RM, Juhl CR, Jensen SBK, et al. Combination of exercise and GLP-1 receptor agonist treatment reduces severity of metabolic syndrome, abdominal obesity, and inflammation: a randomized controlled trial. *Cardiovasc Diabetol*. 2023;22:41.

12. Khamroev T.T., Sanoev Z.I., Rakhimboev S.D., Abdinazarov I.T., Rashidov S.Z. Effect of antiarrhythmic substance N – dezacetylappaconitin on the central nervous system. *ISJ Theoretical & Applied Science*, 07 (99), 153-157. <http://soi.org/1.1/TAS-07-99-31> Doi:<https://dx.doi.org/10.15863>

13. Sanoev Z.I., Abdinazarov I.T., Rakhimboev S.D., Rashidov S.Z., Hamroyev T.T. Study Of The General Pharmacological Properties Of A New Antiarrhythmic N-Deacetylappaconitine With Oral Administration. *The American Journal of Medical Sciences and Pharmaceutical Research*, 3(03), 60-64. <https://doi.org/10.37547/TAJMSPR/Volume03Issue03-08>

14. Eisenberg D, Shikora SA, Aarts E, et al. 2022 American Society of Metabolic and Bariatric Surgery (ASMBS) and International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO) indications for metabolic and bariatric surgery. *Obes Surg*. 2023;33:3-14.

15. Sanoev Z. I, Ismailova D. S, Rakhimboev S. D. O, Khamroev T, T, Elmuradov B. Z, Abdinazarov I. T, Rashidov S. Z. O. Synthesis and Research Anticonvulsant Activity of Annulated Triazolo-Thiadiazine Derivative in Laboratory Animals. *Biomed Pharmacol J* 2023;16(4). DOI : <https://dx.doi.org/10.13005/bpj/2820>

16. Rubino DM, Greenway FL, Khalid U, et al. Effect of weekly subcutaneous semaglutide vs daily liraglutide on body weight in adults with overweight or obesity without diabetes: the STEP 8 randomized clinical trial. *JAMA*. 2022;327:138-150.

17. Sanoev, Z.I., Djaxangirov, F.N., Sadikov, A.Z., Sagdullaev, S.S. Hamroyev T.T. Antiarrhythmic activity of N-deacetylappaconitine when administered orally. *Annals of the Romanian Society for Cell Biology*, 2021,25(2), 2339–2346. <https://doi.org/10.37547/tajas/Volume03Issue03-06>

18. Sokhib Rashidov Zamon o'g'li, Muslimakhon Kamolova Mirzokhidjon qizi, Ikhvoliddin Mirzaev Komiljon o'g'li, Nodira Pardaeva Botir qizi, Sevara Rakhmatullaeva Shukhrat qizi/. (2025). The importance of cardiotonic drugs in medical practice, the range of applications and the advantages of their use. *International Journal of Cognitive Neuroscience and Psychology*, 3(5), 95–100. Retrieved from <https://medicaljournals.eu/index.php/IJCNP/article/view/1856>

19. Swarup S, Ahmed I, Grigorova Y, et al. Metabolic Syndrome. [Updated 2024 Mar 7]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK459248/>

20. Sanoev Zafar Isomiddinovich, Rashidov Sokhib Zamon ugli, Raximboev Sukhrob Davlatyor ugli, Abdinazarov Ibrokhim Tuychievich, Khamroev Tolmas Tolibovich, Ismailova Dilnoza Safaralievna, & Elmuradov Burkhon Juraevich. (2022). Research of Anticonvulsant Activity of Compound 5- (P-Aminophenyl) - 1,3,4-Oxadiazole-2-Thion. *Texas Journal of Medical Science*, 13, 17-21. Retrieved from <https://zienjournals.com/index.php/tjms/article/view/2434>

21. Yu. R. Mirzaev, T. T. Khamroev, E. M. Ruzimov, B. N. Khandamov, & Sh. M. Adizov. (2022). Evaluation of the Effect on the Nervous System of Substances with an Alkaloid

Structure Having Antitumor Activity. Journal Healthcare Treatment Development(JHTD) ISSN : 2799-1148, 2(06), 6-10. Retrieved from <http://journal.hmjournals.com/index.php/JHTD/article/view/1577>

22. Kim NH, Choi J, Kim YH, et al. Addition of fenofibrate to statins is associated with risk reduction of diabetic retinopathy progression in patients with type 2 diabetes and metabolic syndrome: a propensity-matched cohort study. *Diabetes Metab.* 2023;49:101428.

23. Aripov A.N., Aripov O.A., Akhunjanova L.L., Nabiev A.O., Nabieva D.A., & Khamroev T.T. (2022). Study the antifibrous efficacy of plant proanthocyanidin in rats with chronic heliotrine liver damage. *Frontline Medical Sciences and Pharmaceutical Journal*, 2(05), 16-25. <https://doi.org/10.37547/medical-fmfpj-02-05-03>.

24. Marseglia A, Darin-Mattsson A, Skoog J, et al. Metabolic syndrome is associated with poor cognition: a population-based study of 70-year-old adults without dementia. *J Gerontol A Biol Sci Med Sci.* 2021;76:2275-2283.

25. Sokhib Rashidov Zamon o'gli, Nilufar Ergasheva Ag'zamjon qizi, Elyor Zokirboev Anvarjon o'gli, Umidjon Akramov Abdusamad o'gli, & Aziza Egamberdieva Farkhod qizi. (2025). Drugs That Increase the Tone of the Human Body and Pharmacological Characteristics of Immunodeficiency Agents. *American Journal of Biomedicine and Pharmacy*, 2(5), 300-306. Retrieved from <https://biojournals.us/index.php/AJBP/article/view/1065>

26. Sokhib Rashidov Zamon o'gli, Murodjon Nabiev Mahammadkarim o'gli, Mo'tabar Yoqubjonova Khusanboy qizi, Shakhzodakhon Bekmurodova Po'latjon qizi, & Jumanazar To'ychiev Saidqul o'gli. (2025). Comparative Analysis of Drugs Used for Anemia and Drugs Storing Iron. *Research Journal of Trauma and Disability Studies*, 4(5), 190-195. Retrieved from <https://journals.academiczone.net/index.php/rjtds/article/view/5141>

27. Mohammadpour S, Ghorbaninejad P, Janbozorgi N, et al. Associations between adherence to MIND diet and metabolic syndrome and general and abdominal obesity: a cross-sectional study. *Diabetol Metab Synd.* 2020;12:101.

28. Sokhib Rashidov Zamon o'gli, Shakhzoda Abduraimova Abdusattor qizi, Nigora Yusufjonova Mirrakhim qizi, Diyora Turdibekova Erkinjon qizi, & Makhsuma Dovutkho'jayeva Maqsudjonovna. (2025). Classification, Indications for Use, Range of Applications and Disadvantages of Medicines against Nematodes and Leishmania. *Research Journal of Trauma and Disability Studies*, 4(5), 196-201. Retrieved from <https://journals.academiczone.net/index.php/rjtds/article/view/5142>

29. Endothelial dysfunction, platelet hyperactivity, hypertension, and the metabolic syndrome: molecular insights and combating strategies. Das D, Shruthi NR, Banerjee A, Jothimani G, Duttaroy AK, Pathak S. *Front Nutr.* 2023;10:1221438. doi: 10.3389/fnut.2023.1221438.

30. Sokhib Rashidov Zamon o'gli, Nigora Yusufjonova Mirrakhim qizi, Diyora Turdibekova Erkinjon qizi, Makhsuma Dovutkho'jaeva Maqsudjonovna, Shakhzoda Abduraimova Abdusattor qizi, Analysis of the effect of medicines used in medical practice for various diseases on the fetus , european journal of modern medicine and practice: Vol. 5 No. 5 (2025) 342-347.

31. Sokhib Rashidov Zamon o'gli, Elyor Zokirboev Anvarjon o'gli, Umidjon Akramov Abdusamad o'gli, Aziza Egamberdiyeva Farkhod qizi, Munisa Qo'shbekova Ro'zimbek qizi. (2025). Analysis of general and specific pharmacological properties of fat-soluble vitamins. *International Journal of Cognitive Neuroscience and Psychology*, 3(5), 101-106. Retrieved from <https://medicaljournals.eu/index.php/IJCNP/article/view/1857>

32. Prevalence and risk factors of metabolic syndrome: a prospective study on cardiovascular health. Rus M, Crisan S, Andronie-Cioara FL, Indries M, Marian P, Pobirci OL, Ardelean AI. *Medicina (Kaunas)* 2023;59:1711. Doi: 10.3390/medicina59101711.

33. Progress in understanding metabolic syndrome and knowledge of its complex pathophysiology. Jha BK, Sherpa ML, Imran M, Mohammed Y, Jha LA, Paudel KR, Jha SK. *Diabetology*. 2023;4:134–159.

