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Abstract: This paper will discuss the estimation results of Weibull distribution with type 1 right-censored data using             

numerical methods. These methods involve simulations employing the Maximum Likelihood Estimation 

technique, utilizing both the Quasi-Newton rule and the Nelder-Mead simplex algorithm. The simulation 

includes generating random sample data from distribution with sample n sizes of 500 and 1000. The 

parameters used for the initial guess are obtained from example data of patients with lung cancer, 

specifically 2, 3k   . Based on the simulation results of the two estimation methods, it is evident that 

parameter estimation using the Quasi-Newton rule outperforms the Nelder-Mead simplex algorithm when 

in an uncensored state. However, the estimated results of the Nelder-Mead method show better estimated 

values compared to the Quasi-Newton rule after a fixed censoring time. [see, graphs and tables below]. 
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1 INTRODUCTION 

Usually, when estimating unknown parameters using 

the MLE method, it is necessary to calculate the integral 

and derivatives of the cumulative distribution function 

( )F x . However, in some cases, due to the complexity 

of integration and derivation by the analytical method, 

numerical calculation in computer programs becomes 

necessary. In this thesis, the unknown parameters of the 

continuous Weibull distribution are estimated using 

numerical methods with random samples.The Weibull 

distribution is widely used in various fields, including 

modeling the distribution phenomena of fatigue and the 

lifespan of many devices, such as bearings, shafts, and 

motors. Luís Andrade Ferreira FEUP - Faculdade de 

Engenharia da Universidade do Porto Department of 

Mechanical Engineering Rua Dr. Roberto Frias, 4200-

465, Porto, Portugal and José Luís Silva ESTV – Escola 

Superior Tecnologia de Viseu Department of 

Mechanical Engineering and Industrial Management 

Campus Politécnico, 3504-510, Viseu, Portugal are 

created an article which is based on Expectation-

Maximization algorithm to estimate unknown 

parameters of Weibull distribution with MLE method. 

In this article, we compare the methods of estimating 

unknown parameters of the Weibull distribution using 

the Nelder-Mead and Quasi-Newton rules with 

numerical solutions in Matlab, as opposed to the EM 

algorithm. [1,2,4]. 

2 RESEARCH METHODOLGY 

The estimation process utilizes various statistical 

techniques, methods, and procedures to analyze data 

concerning a variable of interest, such as the time 

elapsed from a clearly defined starting point (e.g., 

equipment installation) to a specific event (e.g., 

equipment or component failure). This process aims to 

estimate the distribution parameters for modeling the 

system under examination. These parameters are the 

distribution characteristics that reflect the behavior of a 

particular population and are therefore fixed for a 

specific system. Hence, the estimation of system 

parameters is derived from the data collected from the 

population. Parametric analysis assumes that the data 

conforms to a specific distribution, such as the Weibull 

distribution. 

 

3 ANALYSIS OF LITERATURE ON THE 

SUBJECT 

In probability theory and statistics, the Weibull 

distribution is a continuous probability distribution. It 

models a broad range of random variables, largely in the 

nature of a time to failure or time between events. The 

probability density function of a Weibull random 

variable is 
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where 0k   is the shape parameter and 0  is 

the scale parameter of the distribution. 

Its complementary cumulative distribution function is a 

stretched exponential function. The Weibull distribution 

is related to a number of other probability distributions; 

in particular, it interpolates between the exponential 

distribution ( 1k  ).  
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The cumulative distribution function for the 

Weibull distribution is 

( / )( ; , ) 1
kxF x k e     

for 0x  , and ( ; , ) 0F x k     for 0x  . 

4 ANALYSIS AND RESULTS 

As we mentioned above, it is necessary to calculate the 

integral and derivatives of the cumulative distribution 

function ( )F x . However, in some cases, due to the 

complexity of integration and derivation by the 

analytical method, numerical calculation in computer 

programs becomes necessary. To present some results 

obtained through numerical optimization using 

MATLAB for the Weibull distribution, below graphs 

and table 1 display the findings. 

 [Here, we can compare the results of both 

methods at different censoring levels.]  

 

 
 

 

 
 

 
 

 
5 CONCLUSIONS AND SUGGESTIONS 

Based on the simulation results of the two estimation 

methods, it is evident that parameter estimation using 

the Quasi-Newton rule outperforms the Nelder-Mead 

simplex algorithm when in an uncensored state. 

However, the estimated results of the Nelder-Mead 

method show better estimated values compared to the 

Quasi-Newton rule after a fixed censoring time. 

Estimated of unknown parameters of Weibull 

distribution with two rules in MLE 

Table 1 

Interval [0;10] 

T p% 
Weibull Distribution 

 Initial Guess k =2; λ=3 
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[0;10]iT   fixed constant 
 

MLE by Quasi-

Newton rule 

MLE by 

Nelder-

Mead rule 
 

n=500 
 

10 0% 
k =1.9815; 

 λ =3.0215; 

k =1.9118; 

 λ =3.0412;  

2.7 10% 
k =2.0913; 

 λ =2.705; 

k =2.0742; 

 λ =2.809;  

2.2 30% 
k =2.323; 

 λ =2.2342; 

k =2.1821; 

 λ =2.401;  

n=1000 
 
 

10 0% 
k =1.9898; 

 λ =3.0358; 

k =1.9764; 

 λ =3.0723;  

2.7 10% 
k =2.0816; 

 λ =2.6103; 

k =2.0646; 

 λ =2.6207;  

2.2 30% 
k =2.2259; 

 λ =2.2236; 

k =2.1957; 

 λ =2.3091;  
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