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, В статье представлен расчет оптимальной системы 

рессорного подвешивания для высокоскоростных 

электропоездов. Представлена математическая 

модель, проведены численные исследования в среде 

программирования MATHCAD 15. 
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В мире важное место уделяется развитию и обеспечению безопасности 

высокоскоростного электроподвижного состава, (конкретно, электропоездов и 

высокоскоростных электропоездов), усовершенствованию систем их рессорного 

подвешивания на основании современных средств и оборудования с использованием 

передовых технологий. В развитых странах мира, таких как США, Англия, Франция, 

Испания, Германия, Япония, Китай, Россия и в других странах, при проектировании и 

создании новых электропоездов и электропоездов при повышенном скоростном 

режиме особое внимание уделяется усовершенствованию управляемых систем 

рессорного подвешивания [1,2,3,4]. 

Современная тенденция к значительному повышению скоростей движения на 

железных дорогах Узбекистана требует, прежде всего, улучшения ходовых свойств и 

динамических характеристик электроподвижного состава (конкретно, 

высокоскоростных электропоездов) [5]. Максимальная скорость движения 

определяется взаимодействием пути и подвижного состава (ПС), устойчивостью ПС к 

опрокидыванию, к сходу с рельсов вследствие накатывания на них гребней колес, а 

также ускорением кузова электропоезда в целях обеспечения необходимого комфорта 

для электропоездных бригад [3,4].  

По данной тематике осуществлены и ведутся исследования ведущими учёными 

во всем мире, такими как  С.A. Brebbia (Wessex Institute of Technology, UK), G.M. 

Carlomagno (University of Naples di Napoli, Italy), A. Varvani-Farahani (Ryeson University, 

Canada), S.K. Chakrabarti (USA), S.Hernandez (University of La Coruna, Spain),  

S.H. Nishida (Saga University, Japan), в странах СНГ над поставленными вопросами 

работали авторитетные научные школы и крупные ученые МИИТа, ПГУПС, МАИ, 

ВНИИЖТа, ОАО «ВНИКТИ», ОАО «РЖД» и другие.  

В Узбекистане проблемами оптимизации систем рессорного подвешивания 

подвижного состава занимались академик АН РУз, профессор, д.т.н.  А.Д. Глущенко, 

профессора Ш.С. Файзибаев, Г.А. Хромова, А.А. Шермухамедов,  З.Г. Мухамедова, Р. В. 

Рахимов, Я.О. Рузметов, О.Р. Хамидов, Д.О. Раджибаев, а также их ученики [6,7,8,9].      

При предварительных исследованиях применяют упрощенные динамические 

модели электропоезда с одной степенью свободы, линейчатую одноосную с двумя 

степенями свободы и модель плоского двухосного экипажа (рисунок 1). В таких 

моделях путь, как правило, считают абсолютно жестким, а возмущение – 

детерминированным гармоническим или более сложного вида, (например, 

гармонический импульс). Указанные модели позволяют выявить особенности 

вертикальных колебаний электропоездов, связанные с характером  возмущения, 

влиянием запаздывания в его передаче (передаточные функции), а также получить 

приближенные сведения о влиянии изменения параметров рессорного подвешивания 

на ПДК (показатели динамических качеств). 
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Модель с одной степенью свободы. Эта модель (рисунок 1) электропоезда 

позволяет оценить особенности динамических свойств определяемых ее структурой и 

характером действующего возмущения, а также, наметить пути обеспечения 

виброзащиты электропоезда. Однако, как показывает опыт, полученные по такой 

модели значения ПДК сильно отличаются от действительных. 

Рассмотрим колебания электропоезда как системы с одной степенью свободы 

(рисунок 1), т.е. k = 1; система имеет одну обобщенную координату 𝑞1 = 𝑍. В системе 

действуют активные силы: 

𝐹𝐵- силовое возмущение, закон изменения которого во времени задают (чаще 

всего определяют в виде передаточной функции экспериментально); 

𝐹ин = 𝑚𝐾 ∗ 𝑍̈𝐾- сила инерции; 𝐹𝑦 = Ж ∗ (𝑍𝐾 − 𝜂) - упругая сила; 

𝐹Д- диссипативная сила, для рисунка 1, а - 𝐹Д = 𝛽 ∗ (𝑍̇ − ℎ̇); 

для рисунка 1, б - 𝐹Д = 𝐹тр ∗ (𝑍̇ − ℎ̇). 

Выражения этих сил даны в предположении, что все силы положительны, 

обратное их направление учтено на рисунке 1, в. 

Очевидно, что согласно принципу Даламбера, уравнения колебаний будут: для 

схемы рисунок 1, а  

𝑚𝐾 ∗ 𝑍̈𝐾 + 𝛽 ∗ 𝑍̇𝐾 +Ж ∗ 𝑍𝐾 = 𝛽 ∗ 𝜂̇ +Ж ∗ 𝜂 + 𝐹𝐵;                           (1) 

для схемы рисунок 1, б  

𝑚𝐾 ∗ 𝑍̈𝐾 +Ж ∗ 𝑍𝐾 + 𝐹тр ∗ (𝑍̇𝐾 − 𝜂̇) = Ж ∗ 𝜂 + 𝐹𝐵.                       (2) 

Первые два слагаемых в правой части формулы (1), а также первое слагаемое в 

правой части (2) представляют собой обобщенную силу от кинематического 

возмущения. 

В рессорном подвешивании электроподвижного состава наряду с листовыми 

рессорами и винтовыми пружинами широко используются гидравлические гасители 

колебаний, обеспечивающие необходимое затухание (демпфирование) колебаний 

надрессорных масс. Решим задачу выбора оптимальных параметров системы 

рессорного подвешивания с точки зрения ее демпфирующей способности. 
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Рисунок 1. Модель вертикальных колебаний электропоезда как системы с одной 

степенью свободы: а) – с гасителем колебаний фрикционным; 

б) - с гасителем колебаний гидравлическим; в) – схема сил, действующих на 

электропоезд. 

В виде упрощенной схемы вертикальных колебаний надрессорного строения 

примем схему рисунок 1, а. В представленной на рисунке 1 упрощенной схеме 

колебаний приведенной массы электропоезда приняты следующие обозначения: m – 

масса подрессоренных частей кузова и тележки, приходящаяся на одну колесную пару 

𝑚 = 𝑃0/𝑔 −𝑚НП,                                                         (3) 

где 𝑃0- нагрузка от оси на рельсы; 𝑚нп- масса неподрессоренных частей тележки, 

приходящаяся на одну колесную пару; 

g – ускорение свободного падения; 

Ж – эквивалентная приведенная жесткость рессорного подвешивания, 

приходящаяся на одну колесную пару 
1

Ж
=

1

ЖТО
+

1

4∗ЖК
,                                                         (4) 

где ЖТО- жесткость подвешивания тележки на одну колесную пару; 

ЖК- жесткость подвешивания кузова; 

𝛽 - параметр демпфирования (коэффициент вязкого сопротивления) рессорного 

подвешивания, отнесенный к одной колесной паре. 

 Дифференциальное уравнение свободных колебаний эквивалентной 

приведенной массы m (рисунок 1, а ) будет таким 

𝑚 ∗ 𝑍̈ + 𝛽 ∗ 𝑍̇ +Ж ∗ 𝑍 = 0.                                                  (5) 

Поделим уравнение (5) на m 

𝑍̈ + 2 ∗ 𝑛 ∗ 𝑍̇ + 𝑝2 ∗ 𝑍 = 0,                                                  (6) 

http://www.in-academy.uz/
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где 𝑛 =
𝛽

2∗𝑚
 - коэффициент демпфирования; 

𝑝 = √Ж/𝑚- угловая частота собственных колебаний без учета демпфирования. 

В случае n < p общее решение уравнения (6) имеет вид 

𝑍(𝑡) = 𝑒−𝑛∗𝑡 ∗ (𝐶1 ∗ 𝑐𝑜𝑠( 𝑝1 ∗ 𝑡) + 𝐶2 ∗ 𝑠𝑖𝑛( 𝑝2 ∗ 𝑡)),       (7) 

где 𝑝1 = √𝑝2 − 𝑛2- угловая частота собственных колебаний с учетом 

демпфирования; 𝐶1, 𝐶2- произвольный постоянные, зависящие от начальных условий. 

При начальных условиях 𝑍(𝑡) = 𝑍0, 𝑍̇(0) = −𝑛 ∗ 𝑍0 решение примет вид 

𝑍(𝑡) = 𝑍0 ∗ 𝑒
−𝑛∗𝑡 ∗ 𝑐𝑜𝑠( 𝑝1 ∗ 𝑡)                                       (8) 

Принятые начальные условия обозначают, что в начальный момент времени 

расчетной массе m, отведенной от положения статического равновесия на величину 𝑍0 

сообщена начальная скорость |𝑛 ∗ 𝑍0|, направленная в сторону равновесного 

состояния. 

Важной характеристикой демпфирования системы является степень 

демпфирования                     Д = 𝑛/𝑝 =
𝛽

2∗√𝑚∗Ж
.                                               (9) 

При наличии колебаний в системе Д может изменяться в пределах от 0 (затухания 

колебаний нет) до 1 (колебаний нет, движение апериодическое). В современных 

электропоездах и вагонах электропоездов степень демпфирования может быть в 

пределах от 0.2 до 0.3. 

При проектировании электропоездов важной задачей является выбор 

оптимальных параметров, которые позволяют увеличить срок их службы. 

Применительно к рессорному подвешиванию электропоездов одним из таких 

параметров является величина степени демпфирования – Д, которая рассчитывается 

по методике академика России Л. С. Понтрягина [1], по которой приведенный ниже 

функционал  I за длительное время должен иметь минимальное значение 

𝐼 = ∫ (𝑍2 + 𝛼 ∗ 𝑍̈2)𝑑𝑡
∞

0
,                                                      (10) 

где 𝛼 - весовой коэффициент, учитывающий влияние ускорения. 

Физический смысл функционала такой: умноженный на жесткость рессорного 

подвешивания он даст энергию, сообщаемую системе электродвигателями и 

расходуемую на колебания. Таким образом, оптимальная степень демпфирования 

помимо максимального срока службы узлов экипажной части за счет снижения 

напряжений наиболее нагруженных деталей, позволяет наиболее экономно 

расходовать энергию на создание силы тяги. 

Для практического расчета величины функционала (10) используем 

приближенную формулу [1] 

𝐼 =
𝑍0
2

2∗𝑝
∗ (1/Д − Д + 20 ∗ Д3)                                       (11) 

По указанной формуле (11) можно графически определить 𝐼𝑚𝑖𝑛 и 

соответствующее ему значение Допт. Для этого необходимо задаться значениями “Д” в 

пределах от 0.1 до 1 через 0.1 (рисунок 2).  
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Рисунок 2. График зависимости I(Д). 

Зная Допт можно по формуле 𝛽 = 2 ∗ Д ∗ √𝑚 ∗Ж определить оптимальное 

значение параметра демпфирования на одну колесную пару и при известном 

количестве осей в одной тележке электроподвижного состава определить 

оптимальный параметр демпфирования тележки 𝛽тел. Для заданного значения 𝛽тел и 

заданного значения параметра демпфирования гасителя гас
, определяется потребное 

число гасителей на одну тележку   

𝑁гас=𝛽тел/𝛽гас,                                                                 (12) 

которое округляется до целого значения, обеспечивающего симметричную 

технологическую установку демпферов на тележке вагона высокоскоростного 

электропоезда. 
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