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Введение. В классической задаче интерполяции полиномы строятся на интервале [a,b]. Чем 

больше узлов, тем лучше аппроксимация. Возможности классических интерполяционных полиномов 

частично ограничены. Количество построенной системы алгебраических уравнений зависит от 

количества узлов, с увеличением числа узлов возрастает и порядок системы алгебраических 

уравнений. Этот выпуск широко используется при анализе погодных данных, цифровой обработке 

медицинских сигналов и анализе минеральных ресурсов. Большинство методов расчета основаны на 

замене функций, участвующих в постановке задачи, на функции, близкие к ней в определенном смысле 

и имеющие более простую структуру [1,2,3]. 

ПОСТАНОВКА ЗАДАЧИ 

Предположим, что в интервале [a,b] дано n точек. 

nxxxx ,...,,, 210  
Эти точки называются узлами интерполяции. Пусть значение функции в этих точках равно 

следующему 

nn1100 y)f(x,....)(...,.........y)f(x,y)f(x ==== ii yxf
 

Значениями, принадлежащими определенному классу и принимаемыми функцией f(x) в узлах 

интерполяции, являются: 

nn1100 y)F(x,....)(...,.........y)F(x,y)F(x ==== ii yxF
 

Требуется построить функцию F(x), принимающую значения, и оценить ее абсолютную 

погрешность. 

СПОСОБ РЕШЕНИЯ ЗАДАЧИ 

Используя метод лагранжевой интерполяции, мы получаем полином F(x) для указанной выше 

задачи. 

Для каждого узла интерполяции 
)y,(x ii  строим отдельный полином. 

(x)F...(x)F(x)Fy(x)(x)F nn1n10n0n +++== nn yyL
                    (1) 

Каждый из Fin(x)– является полиномом n-степени, тогда (1) также является полиномом n-степени. 

Каждого – Fin (x)  
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мы выбираем выполнить условия [4]. 

F(x) — полином n-степени с корнями niii xxxxxx ,...,,,...,,, 1210 +− . 

Понятно что многочлен получет вид  

)x-x(...)x-x)(x-x(...)x-)(xx-(xA(x)F n1ii-i10in = +  

Здесь А- это константа. Согласно условиям 
1(x)Fin =

будет если, 
ji =
. Теперь мы находим А. 
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1)x-x(...)x-x)(x-x(...)x-)(xx-(xA nj1iji-ij1j0j = +                         (2) 
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в этом случае мы получим интерполяционное уравнение Лагранжа для неравных интервалов 

следующим образом [5]. 
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РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА 

Построить интерполяционный полином Лагранж для сигналов( таб 1) 

1-таблица 

 Значения функции, соответствующие узлам 

i Xi Y(xi) 

0 0,1 0.0334 

1 0,1 0.0339 

2 0,2 0.0343 

3 0,3 0.0348 

4 0,4 0.0353 

5 0,5 0.0357 

6 0,6 0.0362 

7 0,7 0.0368 

8 0,8 0.0374 

9 0,9 0.0381 

 

2-таблица. 

Оценка погрешности интерполяции в методе Лагранжа 

i xi y(xi) Li(xi) | y(xi)- Li(xi)| 

0 0,1 0.0334 0.0334 0 

1 0,1 0.0339 0.0337 0.0002 

2 0,2 0.0343 0.0341 0.0002 

3 0,3 0.0348 0.0344 0.0004 

4 0,4 0.0353 0.0348 0.0005 

5 0,5 0.0358 0.0353 0.0005 

6 0,6 0.0362 0.0357 0.0005 

7 0,7 0.0367 0.0362 0.0005 

8 0,8 0.0372 0.0368 0.0004 

9 0,9 0.0376 0.0374 0.0002 

10 1 0.0381 0.0381 0 
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Рисунок 1. Результат интерполяции сигналов методом Лагранжа 

ЗАКЛЮЧЕНИЕ 

Методом интерполяции Лагранжа в точках (узлах) сечения строились полиномы. Разработаны 

алгоритм и программа, повышающие точность интерполяции. Абсолютная погрешность 

интерполяционного полинома Лагранжа на данном интервале составила L(x)=0005. Установлено, что 

метод интерполяции Лагранжа более эффективен при восстановлении аналитического представления 

функции или функции в заданных точках. 
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