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Аннотация. Предложен метод аналитико-численного решения не осесимметричной краевой 

задачи теории упругости для тела в виде цилиндра с несколькими цилиндрическими полостями. 

Решение строится в виде суперпозиции точных базисных решений уравнения Ламе для цилиндра в 

системах координат, отнесенных к центрам граничных поверхностей тела. Граничные условия задачи 

удовлетворяются точно при помощи аппарата обобщенного метода Фурье. В результате исходная 

задача сводится к бесконечной системе линейных алгебраических уравнений, оператор которой 

является фредгольмовым в гильбертовом пространстве l2. Разрешающая система решается численно 

методом редукции. Исследована практическая скорость сходимости метода редукции. Проведен 

численный анализ напряжений в зонах их наибольшей концентрации. Достоверность результатов 

подтверждается сравнением их для двух случаев: цилиндра с шестнадцатью и с четырьмя 

цилиндрическими полостями. 

Ключевые слова: краевая задача, обобщенный метод Фурье, разрешающая система, 

цилиндрическая граница, теоремы сложения. 

  

1.  Введение 

 Краевые задачи теории упругости для многосвязных тел находят приложение в моделировании 

напряженно-деформированного состояния в пористых и композиционных материалах [1-4]. В случае 

когда число границ многосвязного тела N ≥ 3, практически отсутствуют эффективные методы их 

решения. Краевые задачи теории упругости для бесконечного цилиндра рассматривались в 

классических работах. Их решения были получены автором методом Фурье.  

В настоящей работе приводится аналитико-численное решение не осесимметричной краевой 

задачи теории упругости для тела в виде цилиндра с несколькими цилиндрическими полостями. 

Решение строится в виде суперпозиции точных базисных решений уравнения Ламе для цилиндра в 

системах координат, отнесенных к центрам граничных поверхностей тела [5-7]. Граничные условия 

задачи удовлетворяются точно при помощи аппарата обобщенного метода Фурье. В результате 

исходная задача сводится к бесконечной системе линейных алгебраических уравнений, оператор 

которой является фредгольмовым в гильбертовом пространстве l2. Разрешающая система решается 

численно методом редукции [8-11]. Исследована практическая скорость сходимости метода редукции. 

Проведен численный анализ напряжений в зонах их наибольшей концентрации. 

2. Постановка задачи 

Рассматриваем бесконечный упругий цилиндр Ω0, содержащий N цилиндрических полостей Ω𝑗  (j 

= 1 ÷ N), оси которых параллельны оси цилиндра. Обозначим через 𝑂𝑗  (j = 0 ÷ N) точки, принадлежащие 

осям исходного цилиндра и полостей, расположенные в плоскости, перпендикулярной образующей 

цилиндра. Предполагается, что точки 𝑂𝑗 (j = 1 ÷ N) образуют регулярную структуру: тетрагональную, 

гексагональную или другую (рис. 1). 

Будем использовать одинаково ориентированные цилиндрические системы координат (𝜌𝑗 , 𝜑𝑗 , 

𝑧𝑗 ), начала которых отнесены к точкам 𝑂𝑗 (j = 0 ÷ N). Радиусы цилиндров Ω𝑗 равны 𝑅𝑗 , границы 

цилиндров Г𝑗 описываются уравнениями  𝑅𝑗 = 𝜌𝑗. Предполагается, что полости расположены внутри 

исходного цилиндра и их границы не пересекаются [12-15]. Рассмотрим первую краевую задачу теории 
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упругости для указанной области. Предполагается, что к внешней границе приложена нагрузка 

𝑓(𝜑0, 𝑧0), которая допускает представление абсолютно и равномерно сходящимся рядом и интегралом 

𝑓(𝜑0, 𝑧0) = ∑ ∫ [𝑓𝑥,𝑚(𝜆)𝑒𝑥 + 𝑓𝑦,𝑚(𝜆)𝑒𝑦 + 𝑓𝑧,𝑚(𝜆)𝑒𝑧] × 𝑒𝑖𝜆𝑧+𝑖𝑚𝜑𝑑𝜆      (1)

∞

−∞

∞

𝑚=−∞

 

где {𝑒𝑥 , 𝑒𝑦, 𝑒𝑧} — орты декартовой системы координат, сонаправленной с введенными 

цилиндрическими системами координат. 

 
Рис. 1. Схематическое представление задачи 

Считается, что вектор-функция f удовлетворяет условиям статики на поверхности 𝜌0 = 𝑅0  .  

Вектор упругих перемещений удовлетворяет следующей краевой задаче для уравнения Ламе: 

                         ∇2𝑈 +
1

1 − 2𝜎
∇ 𝑑𝑖𝑣𝑈 = 0                                                     (2) 

 с граничными условиями: на внешней границе  

                                    𝐹𝑈|Г0
= 𝑓(𝜑0, 𝑧0)                                                             (3) 

и на границе полостей  

                                𝐹𝑈|Г𝑗
= 0 ,                                                                         (4) 

где U — вектор перемещений, FU — соответствующий ему вектор напряжений, σ — 

коэффициент Пуассона.  

3. Решение задачи. 

Общее решение краевой задачи (2)–(4) в области Ω0 ∖ 𝑈𝑗=1
𝑁  Ω0  ищется в виде суперпозиции 

базисных решений уравнения Ламе для цилиндра в системах координат, отнесенных к центрам 

включений 

𝑈 = ∑ ∑ ∑ ∫ 𝐴𝑠,𝑚
(𝑗) (𝜆)𝑈𝑠,𝜆,𝑚

+(3)
(𝜌𝑗 , 𝜑𝑗 , 𝑧𝑗)𝑑𝜆  

∞

−∞

∞

𝑚=−∞

3

𝑠=1

𝑁

𝑗=1

+ ∑ ∑ ∫ 𝐴𝑠,𝑚
(0) (𝜆)𝑈𝑠,𝜆,𝑚

−(3) (𝜌0, 𝜑0, 𝑧0)𝑑𝜆                                (5)

∞

−∞

∞

𝑚=−∞

3

𝑠=1

 

где  𝐴𝑠,𝑚
(𝑗) (𝜆)  — неизвестные функции, подлежащие определению; 𝑈𝑠,𝜆,𝑚

±(3)
(𝜌, 𝜑, 𝑧) — базисные 

решения уравнения Ламе для цилиндра (знаку + (−) соответствует внешнее (внутреннее) решение) [16-

19]. В статье введено понятие базисности системы решений уравнения Ламе и доказана базисность 

систем:  
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{𝑈𝑠,𝜆,𝑚
+(3)

}
𝑠=1,𝑚=−∞,𝜆=−∞

3,∞,∞
,         {𝑈𝑠,𝜆,𝑚

−(3)
}

𝑠=1,𝑚=−∞,𝜆=−∞

3,∞,∞
.  

Приведем явный вид этих решений: 

                    𝑈𝑠,𝜆,𝑚
±(3) (𝜌, 𝜑, 𝑧) = 𝜆−1𝐷𝑠𝑢𝜆,𝑚

±(3)(𝜌, 𝜑, 𝑧),       𝑠 = 1,3,                          (6) 

                    𝑈2,𝜆,𝑚
±(3) (𝜌, 𝜑, 𝑧) = 𝜆−1𝐵2𝑢𝜆,𝑚

±(3)(𝜌, 𝜑, 𝑧),                                                   (7)     

  где 𝐷1 = ∇,    𝐷2 = 𝛻𝑧 − 𝑥𝑒𝑧 ,     𝐷3 = 𝑖[∇ × 𝑒𝑧],     

𝐵2 = (𝑥
𝜕

𝜕𝑥
+ 𝑦

𝜕

𝜕𝑦
) ∇ − 𝑥[𝑒𝑧 × [∇ × 𝑒𝑧]]; 

𝑢𝜆,𝑚
+(3)(𝜌, 𝜑, 𝑧) = 𝑒𝑖𝜆𝑧+𝑖𝑚𝜑𝐾𝑚(𝜆𝜌),   𝑢𝜆,𝑚

−(3)(𝜌, 𝜑, 𝑧) = 𝑒𝑖𝜆𝑧+𝑖𝑚𝜑𝐼𝑚(𝜆𝜌), 

Im(x) — модифицированная функция Бесселя, 𝐾𝑚(𝑥) = (𝑠𝑖𝑔𝑛𝑥)𝑚𝐾𝑚(|𝑥|), 𝐾𝑚(𝑥) — функция 

Макдональда; χ = 3 − 4σ, 𝑢𝜆,𝑚
−(3)

(𝜌, 𝜑, 𝑧) — полный набор частных решений уравнения Лапласа в 

цилиндрических координатах, i — мнимая единица. В развернутой координатной форме базисные 

решения (6), (7) имеют вид: 

       𝑈1,𝜆,𝑚
±(3) (𝜌, 𝜑, 𝑧) = ∓𝑢𝜆,𝑚−1

±(3)
𝑒−1 + 𝑢𝜆,𝑚+1

±(3)
𝑒1 + 𝑖𝑢𝜆,𝑚

±(3)
𝑒0 ,                            (8) 

𝑈2,𝜆,𝑚
±(3) (𝜌, 𝜑, 𝑧) = ∓(𝐷 − 𝑥) [𝑢𝜆,𝑚−1

±(3)
𝑒−1 + 𝑢𝜆,𝑚+1

±(3)
𝑒1] + 𝑖𝐷𝑢𝜆,𝑚

±(3)
𝑒0,            (9) 

                   𝑈3,𝜆,𝑚
±(3) (𝜌, 𝜑, 𝑧) = ±𝑢𝜆,𝑚−1

±(3)
𝑒−1 ∓ 𝑢𝜆,𝑚+1

±(3)
𝑒1,                                        (10) 

где         𝐷 = 𝜌
𝜕

𝜕𝜌
, 𝑒−1 =

1

2
(𝑒𝑥 + 𝑖𝑒𝑦),   𝑒1 =

1

2
(𝑒𝑥 − 𝑖𝑒𝑦), 𝑒0 = 𝑒𝑧. 

Вектор напряжений на площадке с нормалью n имеет вид 

           𝐹𝑈 = 2𝐺 [
𝜎

1 − 2𝜎
𝑛 𝑑𝑖𝑣𝑈 +

𝜕𝑈

𝜕𝑛
+

1

2
(𝑛 × 𝑟𝑜𝑡𝑈)] ,                             (11) 

где G — модуль сдвига. 

Применив к формулам (8)–(10) оператор (11) на площадке с нормалью n = e , получим: 

       𝐹𝑈1,𝜆,𝑚
±(3)

=
2𝐺

𝜌
{∓𝐷𝑢𝜆,𝑚−1

±(3)
𝑒−1 ∓ 𝐷𝑢𝜆,𝑚

±(3)
𝑒1 + 𝑖𝐷𝑢𝜆,𝑚

±(3)
𝑒0} ;                             (12)  

𝐹𝑈2,𝜆,𝑚
±(3)

=
2𝐺

𝜌
{∓[(𝑚 + 1)(𝑚 − 1 + 2𝜎 + 𝜆2𝜌2 + (2𝜎 − 3)𝐷]𝑢𝜆,𝑚+1

±(3)
𝑒−1

∓  [(𝑚 + 1)(𝑚 + 1 − 2𝜎) + 𝜆2𝜌2 + (2𝜎 − 3)𝐷]𝑢𝜆,𝑚+1
±(3)

𝑒1

+ 𝑖[𝑚2 + 𝜆2𝜌2(2𝜎 − 2)𝐷]𝑢𝜆,𝑚
±(3)

𝑒0} ;                                              (13) 

𝐹𝑈3,𝜆,𝑚
±(3)

=
𝐺

𝜌
{±(𝐷 + 𝑚 − 1)𝑢𝜆,𝑚−1

±(3)
𝑒−1 ∓ (𝐷 − 𝑚 − 1)𝑢𝜆,𝑚+1

±(3)
𝑒1 − 𝑖𝑚𝑢𝜆,𝑚

±(3)
𝑒0}. (14) 

4. Анализ численных результатов 

При численной реализации задачи предполагалось, что к границе цилиндра приложена кусочно-

постоянная нормальная нагрузка 

 FU|Γ0= 𝑇𝑒𝜌
 = {

𝑇,   |𝑧| ≤ ℎ/2,

0,   |𝑧| > ℎ/2,
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и выбирались следующие значения параметров: Rj=R, R0=10R, σ=0.38.     Рассматривалась 

тетрагональная упаковка из N=16 цилиндрических полостей, 

расположенных симметрично относительно оси цилиндра (рис. 2).     

Система (20), (21) численно решается методом редукции по 

параметру m (−mmax ≤ m ≤ mmax) при фиксированных значениях λ, 

которые являются узлами квадратурной формулы Лагерра. 

Рис. 2. Тетрагональная упаковка полостей 

На рис. 3–5 приведены графики напряжений σy/T, σx/T, σz/T на 

линии, которая соединяет центры соседних полостей, ближайших к 

оси цилиндра, в зависимости от относительного расстояния между 

полостями a/R в плоскостях z=0 и z=h. Вдоль горизонтальной оси 

откладывается относительное расстояние между границами соседних полостей. Наибольшая 

концентрация напряжений σy/T наблюдается на границах полостей, в то время как для напряжений σx/T 

— в середине линии. Характерным является изменение знака напряжения σz/T при переходе от 

плоскости z=0 к плоскости z = h. 

 

Рис. 3. Напряжения y/T на линии, соединяющей центры полостей в зависимости от 

относительного расстояния между ними  
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Рис. 4. Напряжения σx/T на линии, соединяющей центры полостей в зависимости от 

относительного расстояния между ними 

 
Рис. 5. Напряжения σz/T на линии, соединяющей центры полостей в зависимости от 

относительного расстояния между ними 

На рис. 6 приведены графики напряжений σy/T на линии, соединяющей центры соседних 

полостей, в плоскостях z = 0 и z = h в зависимости от отношения h/R0. 
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Рис. 6. Напряжения σy/T на линии, соединяющей центры полостей в зависимости от соотношения 

h/R0. 

На рис. 7 приведено сравнение напряжений σy/T (рис. 7а) и напряжений σx/T, σz/T (рис. 7б) в 

одних и тех же точках цилиндра в зависимости от количества полостей в упаковке при a/R = 1.5, h/R0 

= 1.0. 

 
Рис. 7. Сравнение напряжений в одних и тех же точках цилиндра в зависимости от количества 

полостей в упаковке. 

Об эффективности предложенной методики можно судить по скорости сходимости метода 

редукции, информация о которой содержится в таблице. В ней приведены значения нормальных 
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компонент тензора напряжений в средней точке линии, соединяющей центры соседних полостей в 

зависимости от размера редуцируемой системы при a/R = 1.5, h/R0 = 1.0. 

Таблица.  Сходимость метода редукции  

mmax 5 10 15 20 

x/T 0.343729 0.344384 0.344381 0.344382 

y/T 1.5964 1.59645 1.59648 1.59648 

z/T -0.260994 -0.260695 -0.260671 -0.260669 

4. Заключение 

Решение строится в виде суперпозиции точных базисных решений уравнения Ламе для цилиндра 

в системах координат, отнесенных к центрам граничных поверхностей тела [20-23]. Граничные 

условия задачи удовлетворяются точно при помощи аппарата обобщенного метода Фурье. В 

результате исходная задача сводится к бесконечной системе линейных алгебраических уравнений, 

оператор которой является фредгольмовым в гильбертовом пространстве l2. Последнее обстоятельство 

позволяет применять при численном решении системы метод редукции. При этом известно, что 

решение редуцированной системы сходится к точному решению разрешающей системы при mmax → ∞. 

Исследована практическая скорость сходимости метода редукции, которая показывает эффективность 

предложенной методики. Проведен численный анализ напряжений в зонах их наибольшей 

концентрации. Достоверность результатов подтверждается сравнением их для двух случаев: цилиндра 

с шестнадцатью и с четырьмя цилиндрическими полостями.  
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