
EURASIAN JOURNAL OF ACADEMIC RESEARCH
Innovative Academy Research Support Center

UIF = 8.1 | SJIF = 5.685 www.in-academy.uz

Volume 2 Issue 13, December 2022 ISSN 2181-2020 Page 867

 A MALWARE VARIANT RESISTANT TO TRADITIONAL
ANALYSIS TECHNIQUES A FORENSIC ANALYSIS OF

ANDROID MALWARE
*Shoraimov Khusanboy Uktamboyevich,
**Akhmadjonov Islomjon Kozimjon o’gli.

* Teacher of the Department, “Systematic and Practical Programming”,
Tashkent University of Information Technologies named after

Muhammad Al-Khwarizmi, UZBEKISTAN.
** Teacher of the Department, “Systematic and Practical Programming”,

Tashkent University of Information Technologies named after
Muhammad Al-Khwarizmi, UZBEKISTAN.

https://doi.org/10.5281/zenodo.7471401
ARTICLE INFO ABSTRACT

Received: 13th December 2022
Accepted: 21th December 2022
Online: 22th December 2022

 In today’s world, the word malware is synonymous with

mysterious programs that spread havoc and sow

destruction upon the computing system it infects. These

malware are analyzed and understood by malware

analysts who reverse engineer the program in an effort to

understand it and provide appropriate identifications or

signatures that enable anti-malware programs to

effectively combat and resolve threats. Malware authors

develop ways to circumvent or prevent this analysis of

their code thus rendering preventive measures ineffective.

This paper discusses existing analysis subverting

techniques and how they are overcome by modern

analysis techniques. Further, this paper proposes a new

method to resist traditional malware analysis techniques

by creating a split-personality malware variant that uses

a technique known as shadow attack. The proposal is

validated by creating a malware dropper and testing this

dropper in controlled laboratory conditions as a part of

the concept of proactive defense.

KEY WORDS

Analysis Aware Malware,

Malware, Malware

Analysis, Proactive Malware

Research, Split Personality

Malware

I. INTRODUCTION

One is quite aware that the computer

executes decisions and processes data

based on instructions given by a computer

program. This computer program is just a

series or sequence of specific instructions

that are given by a programmer to the

computer. But, even then there are specific

programs that are developed by malicious

programmers that fulfill their harmful

intent. Such programs are what is usually

referred to as malicious programs [1]. The

concept of malicious programs or malware

came to the forefront when Bob Thomas,

experimentally created a simple self-

replicating program that was intended to

illustrate a mobile application [2]. The

flipside of the experiment was that it also

inflicted damage upon the system.

Malware today is not of one specific kind. It

is multifunctional and complicated. To

manage the exponential number of

malware variants appearing on the internet

every single day, security analysts and

http://universalimpactfactor.com/wp-content/uploads/2022/02/EURASIAN_JOURNAL_OF_ACADEMIC_RESEARCH.jpg
http://sjifactor.com/passport.php?id=21990
file:///D:/Work/Innovative%20Academy/Innovative%20Academy%20journals/EJAR/Main%20documents%20-%20Asosiy%20fayllar/www.in-academy.uz
https://doi.org/10.5281/zenodo.5584563

EURASIAN JOURNAL OF ACADEMIC RESEARCH
Innovative Academy Research Support Center

UIF = 8.1 | SJIF = 5.685 www.in-academy.uz

Volume 2 Issue 13, December 2022 ISSN 2181-2020 Page 868

product vendors employ a variety of

automated tools to detect, classify or

analyze malicious code either in

combination or as a single entity. Malware

analysis is a cornerstone of defense against

malicious programs that plague the

computer world. The aim of the malware

analyst is to understand the working of a

malicious program and then suggest

techniques to mitigate that threat. Malware

authors usually come up with techniques to

thwart malware analysis. Code obfuscation,

Self-encryption, polymorphic engine, and

mutation are some of the techniques that

malware authors have developed to thwart

analysis. But over time, malware analysts

have managed to overcome this barrier.

The details are discussed later in the paper.

At this juncture, it should be mentioned

that malware attacks are not just targeting

financial institutions, defense sectors, and

occasional unsuspecting end users.

According to [3], it is not completely

possible for any anti-malware tool to detect

the targeted and sophisticated cyber

attacks of the modern age.

This paper proposes to show that existing

traditional malware analysis techniques

fall short when faced with techniques that

follow unexpected patterns and convoluted

processes. Further, due to the limited

availability of ethical research on malware

attack techniques, this paper also aims to

share, for research purposes, a malware

variant that is resistant to traditional

analysis techniques and by revealing the

technique, be a part of the process of

converting malware analysis from being

reactive to proactive.

The following sections of this paper would

shed further light on this topic. Section 2

defines the term ”Malware Analysis”, and

also explains the various traditional

malware analysis methods and most

related literature. It also discusses a

particular variant of malware called Split-

Personality Malware, its analysis methods,

as well as an attack technique known as the

Shadow attack which is used by the

proposed malware variant. Section 3

provides the foundation for the

proposed malware variant, discussing

the architecture and its working. It includes

details on how it is resistant to traditional

malware analysis techniques. Section 4

details the experimental results and

observations on testing the variant under

controlled laboratory conditions. Section 5

concludes the paper and describes future

directions that are evolved as a result of

this research.

II. BACKGROUND AND RELATED

LITERATURE

A. Malware Analysis

This is the cornerstone of dissecting and

understanding malware code so as to stop

similar attacks. The analysis is also

important when one tries to generate

signatures for particular malware. The

formal definition for malware analysis is

stated as “the action of taking malware

apart to study it” by extending the common

definition of the word “analysis” [1]. This

paper extends this explanation and defines

malware analysis as “a method of

understanding the behavior and structure

of malicious code that is as complete as

possible”.

Accordingly, there are various techniques

for malware analysis. The traditional

methods are popularly classified into

‘Static Analysis’ and ‘Dynamic Analysis’ [4].

Depending on the type of malware

involved, the kind of analysis technique

used determines the more optimal and

valid result [5].

http://universalimpactfactor.com/wp-content/uploads/2022/02/EURASIAN_JOURNAL_OF_ACADEMIC_RESEARCH.jpg
http://sjifactor.com/passport.php?id=21990
file:///D:/Work/Innovative%20Academy/Innovative%20Academy%20journals/EJAR/Main%20documents%20-%20Asosiy%20fayllar/www.in-academy.uz

EURASIAN JOURNAL OF ACADEMIC RESEARCH
Innovative Academy Research Support Center

UIF = 8.1 | SJIF = 5.685 www.in-academy.uz

Volume 2 Issue 13, December 2022 ISSN 2181-2020 Page 869

1) Static Analysis: As the term suggests,

Static Analysis involves analyzing the

malware without running it. This analysis

can be on different forms of the code;

namely as actual code (which is rare), on

bytecode or even assembly code. If the

source code is available, then static

analysis tools can be used to find memory

corruption flaws [6], [7]. Static malware

analysis aims to uncover any potential

malicious intent within a binary

executable. This technique has been the

major strategy for malicious intent

identification for many years. The aim is to

search for specific instruction patterns

within the binary executable image. This

instruction pattern, called the Signature, is

then used to categorize the malicious

behavior. Signatures are usually regular

expressions that express sequences or

variations of sequences of different pieces

of binaries [8].

Searching for regular expressions and

patterns is not the only approach for Static

Analysis. Data mining and statistical

principles are often used to model the code

structure within a binary executable [9]

[10]. The advantage of such strategies for

static analysis is that it follows a more

theoretical approach to make sense of the

binary code. By attempting to make sense

of the code by understanding its semantics,

code execution is no longer a necessity.

2) Dynamic Analysis: Dynamic analysis

techniques focus on observing a program’s

behavior as it executes. They often monitor

running applications for malicious

behavior in a simulated or virtual

environment. The advantage of this

approach is that one does not have to

imagine and figure out if the program

poses a threat or not, but can observe it.

There are two different approaches to

dynamic malware analysis

The simplest way is to take a snapshot of

the complete system state and compare the

results with the snapshot of the same

system after the execution of the malware.

This technique analyzes only the overall

effect of the malware on the system

thereby providing a very coarse-grained

result of the analysis. It also does not take

into account the changes of temporary

values/threads that are in motion while the

malicious code is in execution.

Monitoring an execution environment for

certain specific predefined properties is a

common way employed by dynamic

analysis tools to track process behavior. A

popular approach to this type of analysis is

to execute the program under suspicion

inside a virtual environment [12] [13]. Due

to the extra monitoring capabilities

available, the analysis tool would be able to

allow the program to execute until some

suspicious activity is observed. If it is a

predefined activity, the task of spotting it is

easy. However, in most cases, suspicious

activities usually include or are

interspersed with a sequence of

nonsuspicious activities. This implies that a

malicious program might be able to

perform most or all of its malicious tasks

well before it is detected. In more recent

times, malware that have been able to

detect the presence of analysis

environments are gaining prominence [14]

and in such cases, the malware would

avoid executing any malicious blocks of

code avoid detection.

B. Recent Trends in Malware Analysis

Recent advances in machine learning and

cloud computing have made heuristic

analysis methods more powerful [15].

There have been a lot of studies to find

http://universalimpactfactor.com/wp-content/uploads/2022/02/EURASIAN_JOURNAL_OF_ACADEMIC_RESEARCH.jpg
http://sjifactor.com/passport.php?id=21990
file:///D:/Work/Innovative%20Academy/Innovative%20Academy%20journals/EJAR/Main%20documents%20-%20Asosiy%20fayllar/www.in-academy.uz

EURASIAN JOURNAL OF ACADEMIC RESEARCH
Innovative Academy Research Support Center

UIF = 8.1 | SJIF = 5.685 www.in-academy.uz

Volume 2 Issue 13, December 2022 ISSN 2181-2020 Page 870

optimal machine learning models that can

aid in feature selection and classification

[16]. Advanced techniques such as memory

forensics have enabled researchers to

identify features and indicators of

compromise (IOC) that were previously

hard to find. There have been various

approaches to categorize malware variants

based on machine learning and neural

networks [17]. Given the increasing

magnitude of new malware that need to be

analyzed, security tools tend to prioritize

and identify the samples that deserve

deeper analysis. This process is called

”malware triage” [18]. This concept could,

however, fail to detect a deeply rooted

payload that might have unsuspicious

headers. There has also been an increasing

interest in analyzing mobile malware for

platforms like Android and IoT devices

[19].

C. Anti - Analysis Techniques

As the importance of malware analysis is

evident, malware writers have developed

various techniques to thwart analysis.

Some of the most common methods are

discussed below.

1) Code Obfuscation: Obfuscation is the

popular technique by which malware

writers evade analysts and anti-malware

scanners [20]. An old, yet relevant

technique is the use of a packer. It

compresses and hides the malicious

payload to avoid exposure during static

analysis. Certain implementations can also

detect tampering using integrity checking

schemes. Modern tools such as IDA Pro and

OllyDbg, used commonly by malware

analysts, are now capable of detecting the

presence of packed code.

2) Polymorphic Malware: Obfuscation

did not just ensure a static change of code.

More advanced obfuscation techniques

include self-encrypting and polymorphic

malware. A technique by which a malware

executable conceals itself while

maintaining its attack pathway is called

polymorphism. Inspired by the dynamically

changing malware concealment technique,

Dr. Alan Solomon coined the term for this

functionally. The malware spreads from file

to file, changing/encrypting itself along the

way. In a well defined polymorphic virus,

there is practically nothing common in the

decryptor bytes between multiple versions,

thereby ensuring that there is no pattern to

match [21], [22].

D. Split - Personality Malware

As discussed previously, malware writers

go to extreme extents to keep their code

hidden from malware analysts.

Polymorphic malware were slowly caught

by analysts by making use of emulators,

virtual environments, sandboxes and even

through algorithmic analysis of their code

[21]. This led to the development of

various evasion techniques by malware

authors whose aim was to thwart any

means of analyzing the malware code, be it

debugging, disassembly or analysis in a

virtual environment. When the malware

detects that the system is under analysis, it

hides the malicious functionality or usually

terminates without performing the

malicious activity. Split-Personality

malware is a variety of computer malware

that can understand if it is being analyzed

and change its behavior accordingly. VM

detection techniques like Hardware

Fingerprinting, Registry Check, Memory

Check, VM Communication Channel Check,

Process & File Check, and Timing Analysis

are some of the techniques that stand

instrumental in creating a Split-Personality

malware

http://universalimpactfactor.com/wp-content/uploads/2022/02/EURASIAN_JOURNAL_OF_ACADEMIC_RESEARCH.jpg
http://sjifactor.com/passport.php?id=21990
file:///D:/Work/Innovative%20Academy/Innovative%20Academy%20journals/EJAR/Main%20documents%20-%20Asosiy%20fayllar/www.in-academy.uz

EURASIAN JOURNAL OF ACADEMIC RESEARCH
Innovative Academy Research Support Center

UIF = 8.1 | SJIF = 5.685 www.in-academy.uz

Volume 2 Issue 13, December 2022 ISSN 2181-2020 Page 871

1) Analyzing Split-Personality Malware:

Automated malware analysis tools such as

Anubis, typically follow a dynamic

approach [24]. Since Dynamic analysis

based approaches and traditional malware

analysis techniques are used, the tools only

observe a single execution path. Modern

malware are aware of this strategy and

exploit this by either making use of

behaviors that make use of triggers to

execute or by identifying analyzers so that

malicious behavior could be hidden. This

has given rise to a whole variety of attack

strategies such as logic bombs (e.g. Jokra

trojan), time bombs (e.g. Code Red worm),

command and control bots (e.g. Zeus bot),

etc. This also exposed the main problems of

dynamic analysis tools, namely:

1) Limited test coverage.

2) Malware that can identify and evade

the malware analysis environment.

For the first case, the problem of limited

test coverage, the obvious extension is to

explore multiple execution paths so as to

identify the trigger that enables the

program to exhibit malicious behavior. [25]

had developed a dynamic analysis based

technique that ventures into multiple

execution paths. This is performed by

storing and recursively restoring prior

program states that have been saved and

solving constructed path constraints. This

strategy can be used to discover a concrete

set of in-memory variable values that

satisfy the conditions corresponding to

different paths. They then perform

dynamic taint analysis on the inputs

gathered from system calls and construct

linear constraints depicting the various

dependencies within memory variables.

To address the second problem of malware

that seem to be able to detect that they are

being observed and act accordingly,

researchers have proposed stealthy

(transparent) analysis tools [26] and rules

[27] that are more difficult to identify.

These tools gather system call traces in a

more effective and efficient manner.

However, in case a more fine-grained

analysis is required, especially one that

includes more than system calls, the tools

have to resort to a model in which each of

the individual instructions is inspected and

logged. Unfortunately, for a more complete

and comprehensive analysis, all automated

tools such as Anubis, need to see more than

a system call trace. For example, Anubis

analyses Windows API library calls, and it

also tracks data flow dependencies [24].

E. The Shadow Attack

As behavior-based malware detection and

analysis gathered popularity, the attackers

have also developed similar techniques to

evade these behavior-based malware

detection engines. The main concept off the

Shadow Attack involved partitioning one

piece of malware into multiple “shadow

processes” [28]. None of these shadow

processes contain a behavior recognized by

a single process based malware detectors

as malicious. In most cases, behavior-based

malware detectors make use of system

calls or sequences of system calls/ graphs

that make use of simple inheritance or

branches of individual processes of single

process programs to identify the malicious

characteristics. The shadow attack

technique exploits this characteristic of the

analysis program. Since the malware

analysis program looks for a sequence of

system calls from a single process in order

to mark as malicious, single system calls in

the same sequence that is performed by

multiple shadow calls are not detected.

Further, as behavior-based malware

detection has become more and more

http://universalimpactfactor.com/wp-content/uploads/2022/02/EURASIAN_JOURNAL_OF_ACADEMIC_RESEARCH.jpg
http://sjifactor.com/passport.php?id=21990
file:///D:/Work/Innovative%20Academy/Innovative%20Academy%20journals/EJAR/Main%20documents%20-%20Asosiy%20fayllar/www.in-academy.uz

EURASIAN JOURNAL OF ACADEMIC RESEARCH
Innovative Academy Research Support Center

UIF = 8.1 | SJIF = 5.685 www.in-academy.uz

Volume 2 Issue 13, December 2022 ISSN 2181-2020 Page 872

prevalent, the feasibility of hiding explicit

Shadow Process Calls (SPC) by mixing in

multiple implicit chains was analyzed. This

includes chains that occur using remote

network connections to coordinate the

attack. Dynamic information flow and data

tainting based detection are commonly

used in dynamic analysis. Both of these

techniques assume that assembly

instructions are mainly data-dependent.

This assumption is completely violated as

the shadow process hides the local SPCs by

converting the process from data

dependence to control dependence [29].

Further, a compiler-level prototype tool

named AutoShadow has been developed

for C/C++ based malware codes. It is meant

for malware writers to make the source to

binary and source to source conversions

automatically [28]. The author also claims

to have applied AutoShadow on real-world

malware successfully to show that

behavioral detection/analysis tools can be

evaded by the shadow process. This paper

assumes that the obtained results are

accurate and makes no attempt to test this

functionality of AutoShadow. This paper

also makes use of a proposed variant of

AutoShadow attack technique for a proof of

concept implementation of the proposed

malware variant.

III. THE PROPOSED VARIANT

Symantec Corporation states that a

malware dropper is a means to an end

rather than the end itself. This is because a

dropper itself is not an attack but the initial

stage of the attack. According to Symantec,

droppers primarily act as containers so as

to transfer a malware payload from a

source computer to another destination.

The execution of a dropper implies that it

just loads itself into memory and writes its

malware payload into the target filesystem.

In some cases where the malware payload

has to be installed, the dropper also

performs the installation procedures. Once

the malware has been either written into

filesystem or installed, as required by the

payload, the task of the dropper is

complete and it stops all activities.

Droppers are usually used by most

malware creators to hide their malware.

It has been increasingly proven that insider

attacks are a major concern for most

multinational corporations [30]. Threats

like sabotage, espionage, and unauthorized

trading are on the rise due to practices like

’bring your own device’ (BYOD). According

to EY’s Global Information Security Survey

in 2015, 56% of the participants consider

their own employees to be the second most

likely source of a cyberattack. This

malware variant also makes use of this idea

to target the victim from within the same

network

The proposed variant is a split-personality

malware that combines the concept of

analysis aware malware and the shadow

attack technique. The objective was to

develop a malware dropper that could not

be analyzed using traditional malware

analysis techniques. The research

implements a malware dropper and

specifically prevents analysis by debugging

tools.

A. Architecture

The proposed malware is a variant that

attacks other computers by making use of

their network. The variant usually attacks

nodes from within the same network. It

makes use of a simple peer exchange to

escape detection. The list of notations used

in the proposed attack model is shown in

Table

http://universalimpactfactor.com/wp-content/uploads/2022/02/EURASIAN_JOURNAL_OF_ACADEMIC_RESEARCH.jpg
http://sjifactor.com/passport.php?id=21990
file:///D:/Work/Innovative%20Academy/Innovative%20Academy%20journals/EJAR/Main%20documents%20-%20Asosiy%20fayllar/www.in-academy.uz

EURASIAN JOURNAL OF ACADEMIC RESEARCH
Innovative Academy Research Support Center

UIF = 8.1 | SJIF = 5.685 www.in-academy.uz

Volume 2 Issue 13, December 2022 ISSN 2181-2020 Page 873

I.

TABLE I

NOTATIONS USED IN THE PROPOSED

ATTACK MODEL

∈ ∀ ∈

Based on the notations shown in Table I,

the attack model of the malware variant

which starts from a location c1 ⊆ n1 is

elaborated in equations

(1) (2) and (3).

 True, if any

ActiveDebugger found

(1)

False,

otherwise

if detect(debugger)

 performattack, otherwise

(2)

Figure 1 describes the attack module of the

malware variant. From the definitions, it is

evident that c1, c2, and c3 are three

different computers that are present within

the same network. p1, p2, and p3 are three

processes that are a part of the proposed

variant. p1 performs the split personality

aspect of the malware, p2, and p3 take care

of the shadow attack concept.

The system calls available to AutoShadow

are classified into two broad function

categories [28].

1) File I/O Operations

a) File Open

b) File Read

c) File Write

2) Network Operations

a) Socket

b) Connect

4

Descr

iption

Set Instance

Set of

Networks

Set of

Computers

Set of

Process

Set of

Process

States

Set of

System

Calls

N =

(n1,n2,...,nu)

C =

(c1,c2,...,cv)

P =

(p1,p2,...,pw)

Q =

(q1,q2,...,qx)

S =

(s1,s2,...,sy)

∀

∀

∀sqiiiijC∈∈∈∈∧QSP[1[1[1∀C,.,u,.,v,.,uiii⊆∈∈]]][1,,n[1n[1,ci,.,y,.

,x,.,wii ∈]]N]

∈pi ∈ ∀

http://universalimpactfactor.com/wp-content/uploads/2022/02/EURASIAN_JOURNAL_OF_ACADEMIC_RESEARCH.jpg
http://sjifactor.com/passport.php?id=21990
file:///D:/Work/Innovative%20Academy/Innovative%20Academy%20journals/EJAR/Main%20documents%20-%20Asosiy%20fayllar/www.in-academy.uz

EURASIAN JOURNAL OF ACADEMIC RESEARCH
Innovative Academy Research Support Center

UIF = 8.1 | SJIF = 5.685 www.in-academy.uz

Volume 2 Issue 13, December 2022 ISSN 2181-2020 Page 874

Fig. 1. Attack Architecture of the malware

variant

c) Receive

d) Send

e) Read

f) Write

Based on these calls available, the

proposed variant makes use of two

network operations (sendMessage(),

receiveMessage()) and one file operation

(writeFile()) to fulfill the shadow attack

part. The Split-Personality aspect of the

malware is handled by the operation

debugDetect(). Therefore in Figure 1, the

symbols s1, s2, s3, and s4 correspond to

debugDetect(), sendMessage(),

receiveMessage(), and writeFile()

respectively. Messages m1 and m2 are

shared among the various processes where

m1 is the signal of the dropper to be active

and m2 is the malware that is being

dropped by the proposed malware

dropper.

As mentioned, the malware variant

combines the concept of a split-personality

malware with the shadow attack. Since the

target OS was Microsoft, the malware was

developed using C#. The language also

allows one to directly import the various

Microsoft Windows DLL files and built-in

operations without packing it along with

the malicious code. The kernel32.dll is one

such Windows DLL that is used by the

malware. This is because using the

functions IsDebuggerPresent() and

CheckRemoteDebuggerPresent() present

within the DLL is easier than embedding

the same functionality within the malware.

B. Working of the Malware Variant

The primary assumption is the fact that the

malware has infected a computer c1 within

a network n1. For the purpose of

simulation, the variant carries the old but

famous Shortcut Virus as its payload. This

is nothing but a simple .js file that super

hides all folders in any location and

displays only the shortcut to the location to

the user. Each part of the three-part variant

contains a detection engine that performs

the role of a split-personality malware by

detecting the presence of debuggers. Since

this was a proof of concept malware

variant, it was not made to be an autostart

executable, though

Fig. 2. A Simple Attack Scenario

making it auto-startable is also not

too much trouble. Each executable was

manually started for testing purposes. In

the attack scenario depicted in figure 2,

‘Computer A’ acts as the victim.

Computer A started Program A, one of the

three variant parts. Program A announces

that Computer A is a victim. The split-

personality module of program A (system

Call s1) executes. Only if there is no active

debugger within the system the attack

http://universalimpactfactor.com/wp-content/uploads/2022/02/EURASIAN_JOURNAL_OF_ACADEMIC_RESEARCH.jpg
http://sjifactor.com/passport.php?id=21990
file:///D:/Work/Innovative%20Academy/Innovative%20Academy%20journals/EJAR/Main%20documents%20-%20Asosiy%20fayllar/www.in-academy.uz

EURASIAN JOURNAL OF ACADEMIC RESEARCH
Innovative Academy Research Support Center

UIF = 8.1 | SJIF = 5.685 www.in-academy.uz

Volume 2 Issue 13, December 2022 ISSN 2181-2020 Page 875

module executes. Program A then identifies

a particular location for the payload

destination and an active port for listening

and then transmits this information to

‘Program B’, the second part of the three-

part variant. Program B present in

‘Computer B’ is also within the same

network and accepts this data and

retransmits this to ‘Program C’ in

‘Computer C’. This then transmits the

payload to Computer A using the

information given to it by Program B. This

is clearly explained diagrammatically in

Figure 2.

IV. OBSERVATIONS ON THE VARIANT

Before moving on to describing the

observations, let it be noted that the

proposed malware variant is a proof of

concept dropper that specifically detects

the presence of debuggers. Based on this,

the following observations have been

made.

The variant effectively behaves like a

malware dropper and successfully delivers

the malicious payload to the required host.

It can be seen that on attempting to debug

the bytecode for analysis, the malware

variant acts in a benign manner which is its

primary objective. Also, since the location

and communication ports are randomized,

the reverse trace of the dropped malware

to back to our program is avoided. To

verify that this dropper was not detected

and marked as malicious by antivirus

scanners, it was submitted to online

malware scanners. A quick scan and

Virustotal revealed that this malware

variant was given a clean bill of health.

Further, the only detail that tools like

Anubis were able to infer was the list of

DLLs accessed by the variant. Comodo

Virus Scanner,

5

Norton Power Eraser, and

Malwarebytes also revealed that the

malicious nature of the variant remains

undetected.

A. Detection Mechanism

This version of the malware variant is

vulnerable to static analysis of the PE

bytecode. Using the static analysis

techniques mentioned by [14], one can

identify the splitpersonality engine of the

malware. However, since the static analysis

of bytecode is a tedious process, the variant

accepts the vulnerability as an acceptable

risk. As of now, the presence of the

malware can be seen using various other

techniques such as monitoring real-time

process activity, logging system calls and

tracing system modifications. This is

because the split-personality angle of the

proposed malware focused only on

debuggers.

The malware is also vulnerable to network-

based tracing as the messages m1 and m2

shared are visible over the network.

However, as in the case of static analysis,

since analyzing the huge amount of traffic

over the network is tedious, the

vulnerability remains negligible.

 V. CONCLUSION AND POSSIBLE

DIRECTIONS

Computer malware is definitely the dark

side of computer programming. A single

program can behave in such a malicious

manner that it can destroy in seconds what

people have taken years to achieve.

Malware writing is now a very lucrative

business that an entire underground

economy is thriving. Ransomware attacks

and Cryptomining malware have become a

prominent threat to individuals and

enterprises alike. Due to the arrival of such

variants, supporters of the anti-malware

industry have taken the stance of

http://universalimpactfactor.com/wp-content/uploads/2022/02/EURASIAN_JOURNAL_OF_ACADEMIC_RESEARCH.jpg
http://sjifactor.com/passport.php?id=21990
file:///D:/Work/Innovative%20Academy/Innovative%20Academy%20journals/EJAR/Main%20documents%20-%20Asosiy%20fayllar/www.in-academy.uz

EURASIAN JOURNAL OF ACADEMIC RESEARCH
Innovative Academy Research Support Center

UIF = 8.1 | SJIF = 5.685 www.in-academy.uz

Volume 2 Issue 13, December 2022 ISSN 2181-2020 Page 876

“proactive defense”. This implies that

academicians and researchers are

encouraged to identify novel means of

creating malware so that they can be

effectively blocked before causing

widespread mayhem.

This paper has explored a variant of the

split personality malware that is resistant

to traditional malware analysis techniques.

Since the variant, is itself a three-part

malware, that requires

intercommunication between the parts,

traditional analysis techniques do not

apply to it. Analyzing network

communication from a completely non-

infected system seems to be the only

foolproof method to identify the presence

of this malware variant. This, of course,

implies that malware analysis needs to

move from a host-based analysis to a more

network-based approach. Fortunately, the

Security information and event

management (SIEM) systems used in

enterprises generally monitor the network

for malicious activities and use a trust

model to evaluate their threat. The

difficulty here is that network traffic

analysis along with malware analysis is too

tedious due to the large volume of data.

One might argue that automated network

analysis tools can be used to scan for the

“PUSH” messages through the network. But

to the malware writer, hiding data within

the packet headers is no new task. Further,

by scanning the headers of each and every

packet, the network administrator would

be forced to choose between network

speed and network security.

This malware variant is only a proof of

concept model. However, even analysis of

this is a challenge for malware analysts. A

few other possible variations of this

malware variant such as the inclusion of a

self-destruct or metamorphic engine also

adds to the difficulty of malware analysis.

As malware writers evolve, this type of

malware is definitely going to be a huge

bane for security researchers and

antimalware supporters. This variety of

malware forces the network

administrators to even rethink their

original access control policies. Future

research in malware analysis needs to

focus on this type of malware variants and

its analysis methods.

References:
1. K. Kendall and C. McMillan, “Practical malware analysis,” in Black Hat Conference, USA,

p. 10, 2007.

2. P. Szor, The Art of Computer Virus Research and Defense: ART COMP VIRUS RES

DEFENSE p1. Pearson Education, 2005.

3. V. Benson, J. McAlaney, and L. A. Frumkin, “Emerging threats for the human element

and countermeasures in current cyber security landscape,” in Cyber Law, Privacy, and

Security: Concepts, Methodologies, Tools, and Applications, pp. 1264–1269, IGI Global, 2019.

4. R. Sihwail, K. Omar, and K. A. Zainol Ariffin, “A survey on malware analysis techniques:

Static, dynamic, hybrid and memory analysis,” vol. 8, pp. 1662–1671, 11 2018.

5. S. S. Chakkaravarthy, D. Sangeetha, and V. Vaidehi, “A survey on malware analysis and

mitigation techniques,” Computer Science Review, vol. 32, pp. 1–23, 2019.

6. P. Shijo and A. Salim, “Integrated static and dynamic analysis for malware detection,”

Procedia Computer Science, vol. 46, pp. 804–811, 2015.

http://universalimpactfactor.com/wp-content/uploads/2022/02/EURASIAN_JOURNAL_OF_ACADEMIC_RESEARCH.jpg
http://sjifactor.com/passport.php?id=21990
file:///D:/Work/Innovative%20Academy/Innovative%20Academy%20journals/EJAR/Main%20documents%20-%20Asosiy%20fayllar/www.in-academy.uz

EURASIAN JOURNAL OF ACADEMIC RESEARCH
Innovative Academy Research Support Center

UIF = 8.1 | SJIF = 5.685 www.in-academy.uz

Volume 2 Issue 13, December 2022 ISSN 2181-2020 Page 877

7. A. Damodaran, F. Di Troia, C. A. Visaggio, T. H. Austin, and M. Stamp, “A comparison of

static, dynamic, and hybrid analysis for malware detection,” Journal of Computer Virology and

Hacking Techniques, vol. 13, no. 1, pp. 1–12, 2017.

8. Y. Feng, O. Bastani, R. Martins, I. Dillig, and S. Anand, “Automated synthesis of semantic

malware signatures using maximum satisfiability,” arXiv preprint arXiv:1608.06254, 2016.

9. P. Khodamoradi, M. Fazlali, F. Mardukhi, and M. Nosrati, “Heuristic metamorphic

malware detection based on statistics of assembly instructions using classification

algorithms,” in 2015 18th CSI International Symposium on Computer Architecture and Digital

Systems (CADS), pp. 1–6, IEEE, 2015.

10. L. Xiaofeng, Z. Xiao, J. Fangshuo, Y. Shengwei, and S. Jing, “Assca: Api based sequence

and statistics features combined malware detection architecture,” Procedia Computer Science,

vol. 129, pp. 248–256, 2018.

11. A. Souri and R. Hosseini, “A state-of-the-art survey of malware detection approaches

using data mining techniques,” Human-centric Computing and Information Sciences, vol. 8, no.

1, p. 3, 2018.

12. C. A. Benninger, Maitland: analysis of packed and encrypted malware via

paravirtualization extensions. PhD thesis, 2012.

13. M. Ritwik and K. Praveen, “Analyzing the makier virus,” International Journal of

Computer Science Issues (IJCSI), vol. 10, no. 2 Part 1, p. 530, 2013.

14. R. R. Branco, G. N. Barbosa, and P. D. Neto, “Scientific but not academical overview of

malware anti-debugging, anti-disassembly and anti-vm technologies,” Black Hat, 2012.

15. P. Najafi, A. Muhle, W. P¨ unter, F. Cheng, and C. Meinel, “Malrank:¨ a measure of

maliciousness in siem-based knowledge graphs,” in Proceedings of the 35th Annual Computer

Security Applications Conference, pp. 417–429, ACM, 2019.6

16. R. M. R. G. KannanMani ManiArasuSekar, Paveethran Swaminathan and S. Surya,

“Optimal feature selection for non-network malware classification,” IEEE, 2020. Accepted for

publication in the 5th International Conference on Inventive Computation Technologies

(ICICT-2020).

17. D. Ucci, L. Aniello, and R. Baldoni, “Survey of machine learning techniques for malware

analysis,” Computers & Security, 2018.

18. G. Laurenza, R. Lazzeretti, and L. Mazzotti, “Malware triage for early identification of

advanced persistent threat activities,” arXiv preprint arXiv:1810.07321, 2018.

19. H. Alasmary, A. Anwar, J. Park, J. Choi, D. Nyang, and A. Mohaisen, “Graph-based

comparison of iot and android malware,” in International Conference on Computational Social

Networks, pp. 259–272, Springer, 2018.

20. J. Singh and J. Singh, “Challenges of malware analysis: Obfuscation techniques,”

International Journal of Information Security Science, vol. 7, p. 100, 2018.

21. N. S. Selamat, F. H. Mohd Ali, and N. A. Abu Othman, “Polymorphic malware detection,”

in 2016 6th International Conference on IT Convergence and Security (ICITCS), pp. 1–5, Sept.

2016.

22. A. Miraglia, “Analysing the spreading of computer worms and viruses: potentials and

limits,” Department of Computer Science, University of Zurich, 2011.

http://universalimpactfactor.com/wp-content/uploads/2022/02/EURASIAN_JOURNAL_OF_ACADEMIC_RESEARCH.jpg
http://sjifactor.com/passport.php?id=21990
file:///D:/Work/Innovative%20Academy/Innovative%20Academy%20journals/EJAR/Main%20documents%20-%20Asosiy%20fayllar/www.in-academy.uz

EURASIAN JOURNAL OF ACADEMIC RESEARCH
Innovative Academy Research Support Center

UIF = 8.1 | SJIF = 5.685 www.in-academy.uz

Volume 2 Issue 13, December 2022 ISSN 2181-2020 Page 878

23. K. Vishnani, A. R. Pais, and R. Mohandas, “Detecting & defeating split personality

malware,” in The Fifth International Conference on Emerging Security Information, Systems and

Technologies, pp. 7–13, IEEE Computer Security, 2011.

24. C. Lever, P. Kotzias, D. Balzarotti, J. Caballero, and M. Antonakakis, “A lustrum of

malware network communication: Evolution and insights,” in 2017 IEEE Symposium on

Security and Privacy (SP), pp. 788–804, IEEE, 2017.

25. R. Sahita, X. Li, L. Lu, L. Deng, A. Shepsen, X. Xu, L. Huang, H. Liu, and K. Huang,

“Executing full logical paths for malware detection,” June 29 2017. US Patent App.

14/998,178.

26. G. Pek, “New methods for detecting malware infections and new attacks´ against

hardware virtualization,” 2015.

27. S. Naveen and T. G. Kumar, “Ransomware analysis using reverse engineering,” in

International Conference on Advances in Computing and Data Sciences, pp. 185–194, Springer,

2019.

28. W. Ma, P. Duan, S. Liu, G. Gu, and J.-C. Liu, “Shadow attacks: automatically evading

system-call-behavior based malware detection,” Journal in Computer Virology, vol. 8, no. 1-2,

pp. 1–13, 2012.

29. J. Ming, Z. Xin, P. Lan, D. Wu, P. Liu, and B. Mao, “Impeding behavior-based malware

analysis via replacement attacks to malware specifications,” Journal of Computer Virology and

Hacking Techniques, vol. 13, no. 3, pp. 193–207, 2017.

30. W. Li, W. Meng, L.-F. Kwok, and H. Horace, “Enhancing collaborative intrusion detection

networks against insider attacks using supervised intrusion sensitivity-based trust

management model,” Journal of Network and Computer Applications, vol. 77, pp. 135–145,

2017.

http://universalimpactfactor.com/wp-content/uploads/2022/02/EURASIAN_JOURNAL_OF_ACADEMIC_RESEARCH.jpg
http://sjifactor.com/passport.php?id=21990
file:///D:/Work/Innovative%20Academy/Innovative%20Academy%20journals/EJAR/Main%20documents%20-%20Asosiy%20fayllar/www.in-academy.uz

