

GENETIC POLYMORPHISM OF THE FRU-1,6-DPA GENE AND ITS RELATIONSHIP WITH METABOLIC DISORDERS: A COMPREHENSIVE ANALYSIS

Mamatkulova Dilafruz Abdusamad kizi

Institute of Human Immunology and Genomics at the
Academy of Sciences of the Republic of Uzbekistan

<https://doi.org/10.5281/zenodo.10005854>

The fructose 1,6-diphosphatase (FRU-1,6-DPA) gene, known for its key role in the regulation of carbohydrate metabolism, has received considerable attention due to its potential impact on the development of metabolic disorders. Understanding this complex relationship can provide vital insight into the mechanisms causing metabolic diseases that pose significant public health challenges.

Given the rampant prevalence of metabolic disorders such as obesity, diabetes, and cardiovascular disease, studying the genetic factors that influence their onset and progression is critical. Research into the relationship between genetic polymorphisms in the FRU-1,6-DPA gene and these diseases could pave the way for revolutionary diagnostic and therapeutic methods.

The purpose of this study is to determine the correlation between genetic polymorphism of the FRU-1,6-DPA gene and the occurrence of metabolic disorders. Through thorough literature reviews, determination of enzyme activity, genetic analysis of polymorphic gene variants and associations with disease development, we aim to paint a complete picture of these genetic influences.

A synthesis of existing literature was carried out, including articles, reviews and monographs on genetic polymorphisms of the FRU-1,6-DPA gene and associations with metabolic disorders. Public genome research databases have further expanded our knowledge base. Using molecular biology and genetics techniques such as polymerase chain reaction (PCR) and gene sequencing, we have taken a deep dive into genetic variations and their clinical significance. Data from patients with metabolic disorders and healthy controls have facilitated the analysis of enzyme activity and the detection of polymorphic gene variants.

Results:

Our results highlight the association between FRU-1,6-DPA gene polymorphisms and altered enzyme activities. This relationship extends to increased risk of metabolic disorders, emphasizing specific gene variants that correspond to the phenotypic manifestations of these disorders.

Conclusions:

A convincing connection has been established between the genetic polymorphism of the FRU-1,6-DPA gene and the occurrence of metabolic disorders. Understanding this relationship may be instrumental in developing innovative diagnostic and therapeutic strategies tailored to the unique genetic profiles of individual patients.

References:

1. Gomori G. (1943) Hexosediphosphatase. J. Biol. Chem. 148, 139–149 [Google Scholar]

2. McGilvery R.W. and Mokrasch L.C. (1956) Purification and properties of fructose-1, 6-diphosphatase. *J. Biol. Chem.* 221, 909–917 [PubMed] [Google Scholar]
3. Van Schaftingen E. and Hers H.G. (1981) Inhibition of fructose-1,6-bisphosphatase by fructose 2,6-biphosphate. *Proc. Natl. Acad. Sci. U.S.A.* 78, 2861–2863 10.1073/pnas.78.5.2861 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

