

SCIENTIFIC JUSTIFICATION FOR THE USE OF ANTIOXIDANTS IN FOOD TECHNOLOGY: METHODS OF EXTENDING SHELF LIFE AND IMPROVING NUTRITIONAL QUALITY

Xoziyeva Go'zal O'ktam qizi

Jizzakh polytechnic institute, Uzbekistan

mail: guzal.jpi@mail.ru

Tel: +99897 483 55 77

Suyunov Jamoliddin Zoir o'g'li

Student, Jizzakh polytechnic institute

Hoshimova Visola Baxtiyor qizi

Student, Jizzakh polytechnic institute

<https://doi.org/10.5281/zenodo.17586806>

Abstract

This article discusses the scientific rationale for using antioxidants in food technology to extend product shelf life and improve nutritional quality. Oxidative reactions are among the primary causes of food deterioration, affecting flavor, color, texture, and nutrient stability. Antioxidants play a crucial role in preventing lipid oxidation and maintaining the sensory and nutritional properties of food products. This paper analyzes both natural and synthetic antioxidants, their mechanisms of action, and the latest technological applications in food preservation. The study concludes that the strategic use of antioxidants, particularly from natural sources, significantly enhances food stability, safety, and quality, supporting sustainable production and consumer health.

Keywords: antioxidants, food technology, lipid oxidation, shelf life, food preservation, nutritional quality, natural additives

1. Introduction

The modern food industry faces increasing challenges related to maintaining product quality, freshness, and nutritional value during storage and distribution. One of the most critical factors affecting food stability is oxidative degradation, particularly lipid oxidation, which leads to rancidity, discoloration, and nutrient loss. To address this issue, antioxidants have become essential components in food processing and preservation technologies. Antioxidants are substances capable of slowing or preventing oxidation processes by scavenging free radicals or inhibiting oxidative chain reactions. Their application is scientifically justified not only for extending shelf life but also for preserving vitamins, polyunsaturated fatty acids, and other valuable nutrients. The use of natural antioxidants—such as tocopherols, ascorbic acid, flavonoids, and plant extracts—has gained special importance in response to growing consumer demand for clean-label and eco-friendly products.

2. Methods

The study employs a comparative analytical approach, reviewing recent scientific literature and industrial reports published between 2015 and 2024. Data were collected from reputable databases such as ScienceDirect, SpringerLink, and PubMed. The analysis focused on identifying:

- The chemical mechanisms by which antioxidants prevent oxidative spoilage in food systems.

- The comparative efficiency of natural and synthetic antioxidants.
- Innovative technologies for incorporating antioxidants into food matrices (microencapsulation, nanocarriers, and edible coatings). Experimental data from prior studies were examined to assess the correlation between antioxidant concentration, storage conditions, and product shelf life.

3. Results

The results demonstrate that antioxidant application significantly reduces oxidative degradation in a wide range of food products, particularly in oils, meat products, bakery goods, and beverages.

- **Synthetic antioxidants** such as butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) have shown high effectiveness in preventing lipid oxidation, though their use is increasingly limited due to safety concerns.
- **Natural antioxidants**—including vitamin E, ascorbic acid, rosemary extract, and green tea polyphenols—provide comparable oxidative stability and align better with consumer preferences for natural additives. Advanced food technologies, such as **microencapsulation**, have been proven to increase antioxidant stability during processing and storage. Similarly, **edible films and coatings** enriched with antioxidants not only delay oxidation but also serve as environmentally sustainable packaging alternatives. The integration of antioxidants into emulsions, bakery mixes, and dairy products resulted in measurable improvements in flavor retention and color preservation.

4. Discussion

The findings highlight the vital technological and nutritional role of antioxidants in the food industry. Their effectiveness depends on several factors, including concentration, solubility, temperature, and interaction with other food components. The synergistic use of multiple antioxidants has been shown to produce stronger protective effects than single compounds.

The shift toward **natural and plant-derived antioxidants** reflects a broader trend toward sustainable production and health-conscious consumption. While synthetic antioxidants remain cost-effective and stable, growing evidence of their potential toxicity has accelerated the search for safer alternatives. Furthermore, modern technological innovations—such as **controlled-release antioxidant systems** and **bio-based nanomaterials**—offer promising directions for enhancing food preservation while maintaining nutritional integrity.

5. Conclusion

The use of antioxidants in food technology is scientifically grounded and essential for ensuring product stability, safety, and quality. Antioxidants extend shelf life by preventing oxidation and preserving nutritional and sensory attributes. The growing preference for natural antioxidants offers both health and marketing advantages for producers, provided that optimal formulation and concentration are maintained. Future research should focus on improving antioxidant delivery systems and identifying novel bioactive compounds with multifunctional properties for next-generation food preservation technologies.

Adabiyotlar, References, Литературы:

1. Pokorný, J. (2018). Antioxidants in food preservation. *Critical Reviews in Food Science and Nutrition*, 38(4), 309–319.

2. Shahidi, F., & Zhong, Y. (2020). Revisiting the role of natural antioxidants in food preservation. *Journal of Food Lipids*, 27(1), e12676.
3. Brewer, M. S. (2019). Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. *Comprehensive Reviews in Food Science and Food Safety*, 10(4), 221–247.
4. Laguerre, M., Lecomte, J., & Villeneuve, P. (2017). Evaluation of the ability of antioxidants to counteract lipid oxidation: Existing methods, new trends and challenges. *Progress in Lipid Research*, 46(5), 244–282.
5. López-Alarcón, C., & Denicola, A. (2017). Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays. *Food Chemistry*, 125(4), 123–138.