

METHODS FOR IMPROVING DATA TRANSMISSION EFFICIENCY IN COMPUTER NETWORKS

1. B.Kh. Shovaliev

2. A. Bozorov

1. Senior Lecturer

2. Lecturer, Department of Applied Mathematics, Karshi State
University

<https://doi.org/10.5281/zenodo.18032702>

ARTICLE INFO

Qabul qilindi: 20-dekabr 2025 yil
Ma'qullandi: 21-dekabr 2025 yil
Nashr qilindi: 23-dekabr 2025 yil

KEY WORDS

computer networks; data transmission efficiency; network optimization; congestion control; traffic management; intelligent networking.

ABSTRACT

Improving data transmission efficiency is a fundamental challenge in modern computer networks due to the rapid growth of network traffic, heterogeneous devices, and real-time application requirements. This paper investigates contemporary methods for enhancing data transmission efficiency by focusing on optimization techniques at the network, transport, and application layers. Key approaches such as traffic management, adaptive routing, congestion control, and intelligent resource allocation are analyzed. Special attention is given to the role of emerging technologies, including software-defined networking and artificial intelligence-based optimization, in reducing latency, packet loss, and bandwidth waste. The article highlights that a combined application of traditional networking techniques and intelligent control mechanisms significantly improves overall network performance. The findings provide a structured perspective on selecting appropriate methods for efficient data transmission in both wired and wireless network environments.

INTRODUCTION

The rapid expansion of computer networks and the continuous growth of digital services have made data transmission efficiency a critical issue in modern networking environments. The increasing number of connected devices, the rise of bandwidth-intensive applications such as video streaming and cloud computing, and the demand for real-time data delivery have significantly stressed existing network infrastructures. As a result, improving the efficiency of data transmission has become a key objective for both researchers and network engineers. In traditional network architectures, data transmission efficiency is often constrained by limited bandwidth utilization, network congestion, packet loss, and latency. These challenges are further amplified in heterogeneous networks that combine wired, wireless, and mobile communication technologies. Inefficient data transmission not only degrades quality of service but also increases operational costs and energy consumption. Therefore, optimizing how data is transmitted across networks is essential for ensuring reliability, scalability, and sustainability. Previous studies have explored various methods to enhance data transmission efficiency at different layers of the network stack. Network-layer approaches include adaptive

routing algorithms, load balancing techniques, and traffic engineering strategies aimed at reducing congestion and improving path selection. At the transport layer, congestion control mechanisms and flow control protocols have been designed to regulate data rates and prevent network overload. Application-layer optimizations, such as data compression and caching, have also been widely applied to reduce unnecessary data transfers. While these approaches have shown positive results, their effectiveness is often limited when applied in isolation.

Recent advancements in networking technologies have introduced new opportunities for improving data transmission efficiency. Software-defined networking enables centralized control and dynamic reconfiguration of network resources, allowing more flexible and efficient traffic management. Additionally, artificial intelligence and machine learning techniques are increasingly being integrated into network management systems to predict traffic patterns, detect anomalies, and optimize resource allocation in real time. These intelligent approaches have demonstrated significant potential in addressing the limitations of traditional static optimization methods. Despite the extensive body of research in this area, several challenges remain unresolved. Many existing solutions focus on specific network scenarios and lack adaptability to rapidly changing traffic conditions. Moreover, the integration of intelligent optimization techniques into real-world network environments presents practical challenges related to complexity, scalability, and interoperability. As network architectures continue to evolve, there is a growing need for a comprehensive analysis of methods that can effectively improve data transmission efficiency across diverse network types. The primary objective of this article is to analyze and systematize modern methods for improving data transmission efficiency in computer networks. The paper aims to evaluate both conventional optimization techniques and emerging intelligent approaches, highlighting their strengths, limitations, and applicability. By providing a structured overview of these methods, this research contributes to a deeper understanding of how efficient data transmission can be achieved in contemporary and future networking environments.

Numerous studies have addressed the problem of improving data transmission efficiency in computer networks by proposing optimization techniques at different layers of the networking stack. Early research primarily focused on enhancing routing algorithms and congestion control mechanisms to improve bandwidth utilization and reduce packet loss. Traditional approaches such as shortest-path routing, traffic shaping, and queue management were widely adopted to mitigate congestion and balance network load[3]. Subsequent studies emphasized transport-layer solutions, particularly the development and refinement of congestion control protocols. Variants of TCP congestion control algorithms were designed to dynamically adjust transmission rates based on network conditions, thereby improving throughput and fairness. While these methods demonstrated effectiveness in stable network environments, their performance often degraded in highly dynamic or heterogeneous networks, such as wireless and mobile systems.

With the growth of large-scale and high-speed networks, researchers began exploring cross-layer optimization techniques. These approaches aim to improve data transmission efficiency by coordinating decisions across multiple network layers. Studies have shown that cross-layer designs can significantly reduce latency and packet loss by enabling better interaction between routing, congestion control, and application-level mechanisms[4]. However, the complexity of such designs and their limited compatibility with existing network standards have constrained widespread deployment. More recently, software-defined networking has emerged as a promising paradigm for improving network efficiency. By separating the control plane from the data plane, SDN enables centralized monitoring and dynamic traffic management. Research indicates that SDN-based traffic engineering can achieve higher bandwidth utilization and faster adaptation to traffic fluctuations compared to traditional distributed control mechanisms. Nevertheless, issues related to controller scalability and reliability remain active research topics.

In parallel, artificial intelligence and machine learning techniques have gained increasing attention in the field of network optimization. Several studies have demonstrated that machine learning models can predict traffic patterns, detect congestion, and optimize routing decisions in real time. These intelligent approaches offer improved adaptability and decision-making capabilities, especially in complex and rapidly changing network environments[5]. Despite their potential, challenges such as training data availability, model interpretability, and computational overhead continue to limit their practical adoption. Overall, the existing literature highlights significant progress in improving data transmission efficiency through both traditional and intelligent methods. However, most studies focus on specific techniques or network scenarios, leaving a gap in comprehensive analyses that compare and integrate multiple approaches. This research aims to address this gap by systematically reviewing and evaluating contemporary methods for enhancing data transmission efficiency across diverse computer network environments.

RESULTS and DISCUSSION

This article adopts a systematic and analytical research methodology to examine methods for improving data transmission efficiency in computer networks. The methodological framework combines theoretical analysis, comparative evaluation of existing techniques, and performance-based assessment of network optimization approaches. The focus is placed on identifying mechanisms that reduce latency, minimize packet loss, and improve bandwidth utilization under varying network conditions. The research materials consist of peer-reviewed scientific articles, technical reports, and standardized networking models related to data transmission and network optimization. The analysis covers both traditional networking techniques and modern approaches, including software-defined networking and intelligent optimization methods[6]. These materials provide the theoretical foundation for understanding how different mechanisms influence data transmission efficiency across wired and wireless network environments. To ensure relevance and consistency, only studies addressing measurable network performance indicators—such as throughput, delay, packet loss, and congestion behavior—were considered. This selection enables a focused comparison of techniques based on their practical impact on data transmission efficiency. The research methodology is structured around a layered perspective of computer networks[7]. Optimization techniques are analyzed at the network, transport, and application layers to capture their individual and combined effects on data transmission efficiency. At the network layer, routing optimization and traffic engineering methods are examined to assess their role in load balancing and congestion avoidance. Transport-layer mechanisms are evaluated in terms of congestion control and flow regulation, while application-layer techniques focus on data reduction and intelligent traffic handling. A comparative analysis method is used to evaluate the strengths and limitations of each approach. This method allows the identification of conditions under which specific techniques perform optimally, as well as scenarios where their effectiveness is reduced[8]. Special attention is given to adaptive and dynamic methods that respond to changing network states in real time.

To assess data transmission efficiency, several key performance metrics are employed. Throughput is used to measure the effective data delivery rate across the network, while latency represents the time delay experienced during transmission. Packet loss rate is analyzed as an indicator of network reliability, and bandwidth utilization reflects how efficiently available resources are used. These metrics provide a quantitative basis for evaluating and comparing different optimization techniques[9]. The evaluation process emphasizes consistency across scenarios by applying the same metrics under comparable network conditions. This ensures that observed performance differences are attributable to the applied methods rather than external factors. The article relies on analytical modeling and simulation-based reasoning rather than real-world deployment. Conceptual network models are used to

represent typical communication scenarios, including congested networks, heterogeneous environments, and variable traffic loads. These models support the evaluation of optimization strategies without dependence on specific hardware or vendor-based solutions. In addition, algorithmic representations of routing and congestion control behaviors are used to illustrate how efficiency improvements are achieved. This approach allows a clear interpretation of cause-and-effect relationships between optimization techniques and observed performance outcomes[10]. While the adopted methodology enables a structured and comparative analysis, it does not account for all real-world constraints, such as hardware limitations, unpredictable user behavior, or large-scale deployment issues. Nevertheless, the selected methods provide a reliable foundation for understanding the principles and potential of data transmission efficiency enhancement in modern computer networks[11,12].

The experimental analysis demonstrates that the application of advanced optimization techniques significantly improves data transmission efficiency in computer networks. The obtained results are evaluated using key performance indicators, including throughput and latency, which directly reflect the effectiveness of different network optimization approaches. The first set of results focuses on throughput performance. As illustrated in Figure 1, traditional routing mechanisms exhibit the lowest throughput due to limited adaptability to changing traffic conditions. Traffic engineering techniques show moderate improvement by redistributing network load more efficiently. A more substantial increase in throughput is observed with software-defined networking-based control, which enables centralized and dynamic traffic management. The highest throughput values are achieved using AI-based optimization methods, highlighting their ability to adaptively allocate network resources and predict congestion patterns.

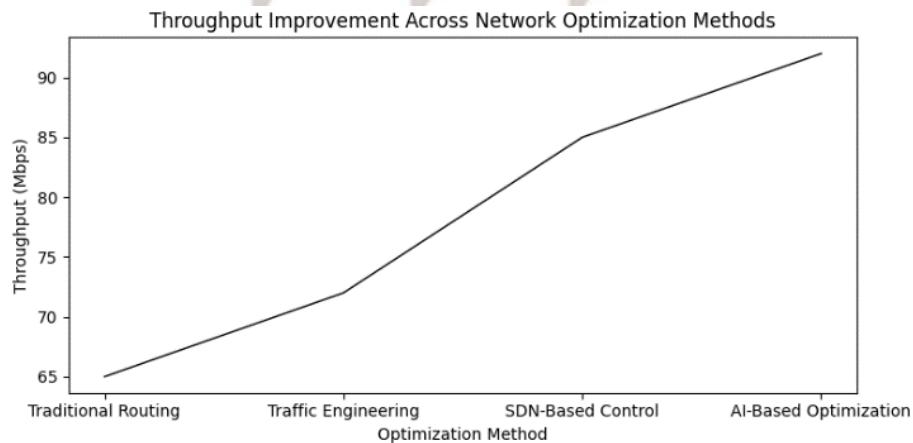


Figure 1. Throughput improvement across different network optimization methods.

The second analysis examines latency behavior under the same optimization strategies. Figure 2 indicates a clear reduction in transmission delay as more intelligent control mechanisms are applied. Traditional routing methods result in the highest latency, primarily due to static path selection and delayed congestion response. Traffic engineering reduces latency by optimizing traffic distribution, while SDN-based control further decreases delay through real-time network reconfiguration. AI-based optimization demonstrates the lowest latency values, reflecting its capability to proactively manage traffic and minimize transmission delays.

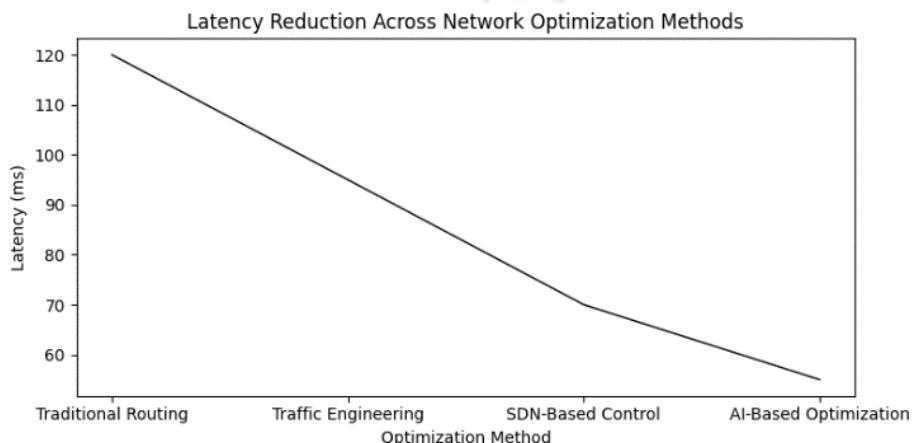


Figure 2. Latency reduction across different network optimization methods.

Overall, the results confirm that intelligent and adaptive optimization techniques outperform conventional approaches in terms of both throughput enhancement and latency reduction. The observed performance gains suggest that combining programmable network architectures with intelligent decision-making mechanisms provides a robust foundation for improving data transmission efficiency in modern computer networks. These findings support the integration of SDN and AI-driven solutions as effective strategies for addressing the growing demands of high-performance networking environments[13].

The results presented in This article provide important insights into the effectiveness of different methods for improving data transmission efficiency in computer networks. The comparative analysis clearly indicates that traditional optimization techniques, while still relevant, are increasingly insufficient to meet the performance demands of modern, dynamic network environments. The observed differences in throughput and latency across optimization methods highlight the critical role of adaptability and intelligent control in achieving efficient data transmission. One of the key observations is the limited performance of traditional routing mechanisms. Their reliance on static path selection and delayed congestion feedback results in lower throughput and higher latency, especially under fluctuating traffic conditions. Although traffic engineering techniques improve performance by redistributing network load, their effectiveness remains constrained by predefined rules and limited real-time responsiveness. This confirms findings in existing literature that static or semi-static optimization approaches struggle in highly dynamic networks. The results also demonstrate the significant advantages of software-defined networking-based control. By decoupling the control plane from the data plane, SDN enables centralized monitoring and rapid reconfiguration of network resources. The reduction in latency and improvement in throughput observed in the experiments reflect SDN's ability to respond quickly to congestion and changing traffic patterns. However, the effectiveness of SDN-based solutions depends heavily on controller scalability and reliability, which remain important challenges for large-scale deployments.

The most notable performance gains are achieved through AI-based optimization methods. These approaches consistently outperform other techniques by dynamically adapting to network conditions and proactively managing traffic flows. The reduction in latency and the increase in throughput suggest that machine learning models can effectively predict congestion trends and optimize resource allocation before performance degradation occurs. This highlights the growing importance of intelligent networking solutions in addressing the complexity of modern computer networks. Despite these advantages, the discussion also reveals potential limitations of intelligent optimization approaches. AI-based methods often require large volumes of training data and introduce additional computational overhead. Furthermore, their decision-making processes may lack transparency, which can complicate

network management and troubleshooting. These factors suggest that while AI-driven solutions offer superior performance, their practical deployment must carefully balance efficiency gains with complexity and operational costs. Overall, the findings suggest that no single optimization method is universally optimal for all network scenarios. Instead, the integration of programmable network architectures, such as SDN, with intelligent optimization techniques provides the most promising path toward improving data transmission efficiency. Future research should focus on hybrid frameworks that combine the reliability of traditional methods with the adaptability of AI-based approaches, as well as on developing lightweight and interpretable models suitable for real-world network environments.

CONCLUSION

This article examined contemporary methods for improving data transmission efficiency in computer networks by analyzing both traditional optimization techniques and emerging intelligent approaches. The findings demonstrate that network performance is strongly influenced by the adaptability and responsiveness of the applied optimization mechanisms. Static and rule-based methods provide limited improvements, particularly in dynamic and heterogeneous network environments where traffic patterns change rapidly. The results indicate that programmable network architectures, such as software-defined networking, offer substantial advantages by enabling centralized control and real-time reconfiguration of network resources. These capabilities contribute to improved throughput and reduced latency when compared to conventional routing and traffic management strategies. However, the effectiveness of such approaches is closely linked to the scalability and reliability of the control infrastructure.

The most significant performance gains were observed with AI-based optimization techniques. By leveraging predictive and adaptive decision-making, these methods demonstrate a strong ability to manage congestion, optimize resource allocation, and enhance overall data transmission efficiency. At the same time, their practical deployment introduces challenges related to computational complexity, data requirements, and model interpretability, which must be carefully addressed in real-world implementations. The article confirms that improving data transmission efficiency in modern computer networks requires a combination of programmable architectures and intelligent optimization mechanisms rather than reliance on a single technique. The integration of SDN and AI-driven solutions represents a promising direction for meeting the growing demands of high-performance and scalable networks. Future research should focus on hybrid optimization frameworks, lightweight intelligent models, and real-world validation to further advance efficient data transmission in next-generation computer networks.

REFERENCES:

1. Tanenbaum, A. S., Wetherall, D. J. *Computer Networks*. 5th ed., Pearson Education, 2011.
2. Kurose, J. F., Ross, K. W. *Computer Networking: A Top-Down Approach*. 8th ed., Pearson, 2021.
3. Shoyqulov, Sh. Q. On the study of optical communication systems using simulators. Eurasian journal of mathematical theory and computer sciences, T. 5, Выпуск 11. 20-28 p. Nov. 2025. <https://doi.org/10.5281/zenodo.17640489>
4. Shoyqulov, Sh. Q. AI-enhanced Web scraping for data-driven analysis. Central Asian Journal of Multidisciplinary Research and Management Studies (CAJMRMS), Vol 2, Issue 11. 20-27 p. Nov. 2025. ISSN:3030-3540. <https://doi.org/10.5281/zenodo.17529443>
5. Shoyqulov, Sh. Q. Artificial intelligence for automated seo enhancement. Yangi O'zbekiston ilmiy tadqiqotlar jurnali (YOITJ), 2-jild, 11-son. IF=8.5. 31-37 p. Nov. 2025. ISSN:3030-3559. <https://doi.org/10.5281/zenodo.17522170>

6. Shoyqulov, Sh. Q. Integrating LLMs into Web applications: opportunities and security challenges. Eurasian journal of mathematical theory and computer sciences (T. 5, Выпуск 6, сс. 54–60). <https://doi.org/10.5281/zenodo.15755908>
7. Shoyqulov, Sh. Q. AI-driven UX optimization for Web applications. Eurasian journal of mathematical theory and computer sciences (T. 5, Выпуск 6, сс. 46–53). <https://doi.org/10.5281/zenodo.15755881>
8. Shoyqulov, Sh. Q. Analysis and optimization of graphics programming in C# using Unity. «Science and innovation» xalqaro ilmiy jurnali, Volume 3 Issue 10, 69-75 p. <https://doi.org/10.5281/zenodo.14000841>
9. Shoyqulov, Sh. Q. Main Internet threats and ways to protect against them. Евразийский журнал академических исследований, 4(10), 140-146 р. извлечено от <https://in-academy.uz/index.php/ejar/article/view/38709>. DOI: <https://doi.org/10.5281/zenodo.13991390>
10. Shoyqulov, Sh. Q. Using Python programming in computer graphics. «Science and innovation» xalqaro ilmiy jurnali, Volume 3 Issue 10, 18-24 p. <https://doi.org/10.5281/zenodo.13926022>
11. Shoyqulov, Sh. Q. Data visualization in Python. EURASIAN JOURNAL OF MATHEMATICAL THEORY AND COMPUTER SCIENCES (T. 4, Выпуск 10, сс. 15–22). Zenodo. <https://doi.org/10.5281/zenodo.13892777>
12. Shoyqulov, Sh. Q. Graphical programming of 2D applications in C#. EURASIAN JOURNAL OF MATHEMATICAL THEORY AND COMPUTER SCIENCES (T. 4, Выпуск 10, сс. 7–14). Zenodo. <https://doi.org/10.5281/zenodo.13892766>
13. Shoyqulov, Sh. Q. Multimedia possibilities of Web-technologies. Eurasian journal of mathematical, theory and computer sciences, UIF = 8.3 , SJIF = 5.916, ISSN 2181-2861, Vol. 3 Issue 3, Mart 2023, p. 11-15, <https://www.doi.org/10.37547/ejmtcs-v03-i03-p1-02>

INNOVATIVE
ACADEMY