INNOVATIVE «Zamonaviy dunyoda ilm-fan va texnologiya» nomli
ACADSNMY ilmiy-amaliy konferensiya

AI-POWERED DEFENSE AGAINST SQL INJECTION, XSS, AND BRUTE-FORCE
ATTACKS

Mirzaeva Asilabonu
Tashkent University of Information Technologies
https://doi.org/10.5281/zenodo0.17091736
Abstract

The rising complexity of web applications has made them increasingly vulnerable to
sophisticated cyberattacks such as SQL Injection (SQLi), Cross-Site Scripting (XSS), and brute-
force login attempts. While traditional security mechanisms remain essential, recent advances
in artificial intelligence (Al), particularly large language models like ChatGPT, offer new
possibilities for both prevention and detection. This paper explores the integration of ChatGPT
into secure coding practices and penetration testing workflows. We demonstrate how ChatGPT
can be prompted to detect insecure coding patterns, suggest secure alternatives, and simulate
attack payloads for testing. The paper also presents comparative results from using ChatGPT to
detect and patch sample SQLi, XSS, and brute-force vulnerabilities in Python-based web
applications. Our findings suggest that combining Al with conventional security frameworks
significantly reduces vulnerability exposure and increases system resilience.

Keywords: ChatGPT, SQL Injection, XSS, Brute-force, Al in cybersecurity, penetration
testing, web application security

Annotatsiya

Veb-ilovalarning murakkabligi ortib borayotgan sari ular kiberhujumlarga, xususan, SQL
inyeksiyasi (SQLi), XSS (Cross-Site Scripting) va bruteforce orqali kirish urinishlariga yanada
ko‘proq zaif bolmoqda. Ushbu maqgolada sun’iy intellekt, ayniqgsa ChatGPT kabi yirik til
modellarining axborot xavfsizligini ta’'minlashdagi yangi imkoniyatlari tahlil qilinadi. ChatGPT
yordamida xatoli kod yozilishining oldini olish, xavfsiz alternativlar tavsiya etish va test
hujumlarini yaratish usullari ko‘rib chigiladi. Amaliy tajribalar asosida SQLi, XSS va brute-force
zaifliklari aniqlanib, ularni tuzatish uchun ChatGPTdan ganday foydalanish mumkinligi
ko‘rsatiladi. Natijalar ChatGPTni an’anaviy xavfsizlik tizimlariga integratsiya qilish veb-ilovalar
barqarorligini sezilarli darajada oshirishi mumkinligini ko‘rsatadi.

Kalit so‘zlar: ChatGPT, SQL inyeksiya, XSS, bruteforce, sun’iy intellekt, veb xavfsizlik

AHHOTaAUMs

C yBe/IMYeHHEM CJIO)KHOCTH BeO-NPHUJIOKEHUM OHU CTAHOBSITCS 6oJiee YSI3BUMBIMH K
COBpeMeHHbIM KubepaTakaM, TakuM Kak SQL-uHbekuuu (SQLi), XSS u moabop maposieit
metoZoM brute-force. B gaHHOW cTaTbe paccMaTPUBAIOTCA BO3MOXXHOCTH HHTErpaunuu
ChatGPT — ozHO# M3 caMbIX MOILHBIX MO/JieJiell HCKYCCTBEHHOTO MHTEJ/IJIEKTA — B MPOIECCHI
6e30MacHOr0 MPOTrPaMMUPOBAHUSI M TECTUPOBAaHUs Ha NPOHHKHOBeHHe. [loka3aHo, Kak
ChatGPT Mo>xHO KCIIO/Ib30BATh [1Jisl BBISIBJIEHUS YSI3BUMOCTEH B KOJI€, FeHepaluy 6e30MacHbIX
aJbTEPHATUB M MOJIeJIMPOBAHUSI aTak. Pe3ysbTaThl 3KCHEPUMEHTOB IMOKa3blBAKOT, 4TO
ucnosib3oBaHue ChatGPT mno3BoJsisieT 3HAYUTEJbHO MOBBICUTh YCTOWYUBOCTH CHUCTEMBI K
aTakaM U CHU3UTb YPOBEHb YSI3BUMOCTEH.

KnwueBbie ciaoBa: ChatGPT, SQL-unbeknusi, XSS, brute-force, HWHU B
KHb6ep6e30MmacHOCTH, 6€30MaCHOCTb Be6-NPUI0KEHU N

INNOVATIVE «Zamonaviy dunyoda ilm-fan va texnologiya» nomli
ACADSNMY ilmiy-amaliy konferensiya

Introduction

In the rapidly evolving digital landscape, web applications have become critical
infrastructure for businesses, governments, and individuals. Their widespread adoption has
unfortunately been matched by an increase in cyber threats targeting them. According to the
Open Web Application Security Project (OWASP) 2023 Top 10 report, vulnerabilities like SQL
Injection (SQLi), Cross-Site Scripting (XSS), and brute-force login attempts remain among the
most exploited security weaknesses in web applications[6]. Traditional defense mechanisms
such as firewalls, static code analyzers, and manual code reviews have served as primary layers
of protection. However, the sophistication of attacks and the velocity of software development
cycles have created an urgent need for intelligent, adaptive, and scalable cybersecurity
solutions. Recent advances in natural language processing (NLP) and artificial intelligence (Al),
particularly large language models (LLMs) such as OpenAl's ChatGPT, present promising new
avenues for augmenting cybersecurity practices[7]. ChatGPT is not only capable of generating
human-like text but also can reason about code, suggest improvements, and simulate attack
scenarios based on prompts. This makes it a potentially powerful tool for developers,
penetration testers, and security analysts.

This paper proposes a novel approach to integrating ChatGPT into both secure coding and
penetration testing practices. We aim to evaluate how well ChatGPT can assist in identifying
vulnerabilities, suggesting security patches, and simulating common attack vectors.
Specifically, we focus on three major threat categories: SQL Injection, Cross-Site Scripting (XSS),
and brute-force login attacks. The paper presents case studies, practical code examples, and a
comparative discussion of results obtained with and without ChatGPT integration.

By the end of this study, we aim to provide a clearer understanding of how Al-driven tools
can be systematically applied to strengthen web application security and reduce the attack
surface proactively.

The integration of artificial intelligence into cybersecurity has been the focus of numerous
academic and industry-driven studies over the past decade. With the emergence of large
language models (LLMs), the landscape has shifted from rule-based anomaly detection to more
intelligent, adaptive systems.

SQL Injection Detection and Al

Studies such as by Algahtani et al. (2021) and Bhandari et al. (2022) explored machine
learning approaches for detecting SQL injection patterns in HTTP traffic. These systems trained
classifiers on labeled datasets to differentiate between normal and malicious queries. However,
these models required feature engineering and lacked generalizability across platforms.

The emergence of LLMs allows for semantic-level understanding of queries. ChatGPT, for
instance, can analyze the context of an SQL query, recognize the presence of concatenated user
inputs, and suggest parameterized alternatives.

XSS and Brute-Force Attack Research

XSS vulnerabilities have been extensively studied through both static and dynamic
analysis. Tools like OWASP ZAP and Burp Suite offer automated scanners, but they often
generate false positives. Recent studies (e.g., Park & Kim, 2020) introduced deep learning-based
models that learn from HTML and JavaScript code patterns.

INNOVATIVE «Zamonaviy dunyoda ilm-fan va texnologiya» nomli
ACADSNMY ilmiy-amaliy konferensiya

Brute-force attacks, especially on login systems, have been addressed with rate-limiting
and CAPTCHA solutions. However, Al has been used to simulate brute-force attempts to test
systems more intelligently. For instance, Singh et al. (2023) used reinforcement learning to
optimize password-guessing strategies, showing how adversaries can also leverage Al

ChatGPT in Cybersecurity

While ChatGPT has primarily been viewed as a conversational agent, its ability to
understand and reason about code has triggered new interest in its cybersecurity potential. In
2023, experiments by Tan et al. demonstrated ChatGPT's ability to identify insecure Python
code segments, explain their risk, and rewrite them securely — all through prompt-based
queries.

Moreover, ChatGPT can be used as an adversarial simulation tool, capable of crafting
realistic payloads for SQLi and XSS that mimic human hackers. Its dual use (defensive and
offensive simulation) makes it unique among Al tools.

Gaps in Existing Literature

Most existing Al models focus on either detection or prevention — rarely both. Moreover,
few studies explore integrating an LLM like ChatGPT into the development pipeline in real time.
This paper aims to fill this gap by demonstrating ChatGPT’s application in both static code
review and penetration testing scenarios, across multiple vulnerability types.

Methodology

This section describes how ChatGPT was integrated into secure coding practices and
penetration testing workflows to identify and mitigate web application vulnerabilities —
specifically SQL Injection (SQLi), Cross-Site Scripting (XSS), and brute-force login attacks[10].

Research Setup

The experiments were conducted using a sample web application built in Python (Flask)
with a SQLite database. Three vulnerable endpoints were deliberately created:

1.A login form vulnerable to brute-force
2.A search bar vulnerable to SQL injection
3.A comment box vulnerable to XSS
These components were tested in two phases:
e Phase 1: Without ChatGPT — using traditional scanners (Burp Suite, OWASP ZAP).
e Phase 2: With ChatGPT prompts — guiding the tool to analyze code and suggest
patches[11][12].

Prompt Engineering with ChatGPT

Prompt engineering was crucial. The prompts were designed to:

o Simulate an attack payload (e.g., “Create a realistic SQLi string for this query: ..."”)

e Analyze a code snippet (e.g., “Is this code vulnerable to SQL injection?”)

e Suggest a secure version of a function (e.g., “Rewrite this code to use parameterized
queries.”)[11][12]

Example 1: SQL Injection Detection Prompt

text

Analyze the following Python code for SQL injection vulnerabilities:

query = "SELECT * FROM users WHERE username ="" + username + "';"

ChatGPT Response:

INNOVATIVE «Zamonaviy dunyoda ilm-fan va texnologiya» nomli
ACADSNMY ilmiy-amaliy konferensiya

This code is vulnerable to SQL injection. Use parameterized queries instead, e.g.:
python
cursor.execute("SELECT * FROM users WHERE username = ?", (username,))

Example 2: Brute-force Defense Simulation Prompt
text
Suggest a rate-limiting mechanism for a login endpoint in Flask.
ChatGPT Response:
Use Flask-Limiter with Redis to restrict repeated login attempts from the same IP address.
Example 3: XSS Attack Simulation
text
Generate an XSS payload for a vulnerable input field.
ChatGPT Response:
Here’s a test payload to check for XSS:
html
<script>alert('XSS")</script>
Implementation Flow
1.Vulnerability Injection: Web app endpoints were manually coded with vulnerabilities.
2.Static Analysis: ChatGPT was used to review code and identify risks.
3.Prompt Testing: ChatGPT was prompted to recommend secure versions.
4.Dynamic Testing: Suggested fixes were applied and retested using OWASP ZAP.
5.Comparison: Results (accuracy, response time, false positives) were recorded.
This systematic approach allowed us to test the real-world utility of ChatGPT for each
vulnerability type in a practical web application.
Results
This section outlines the real implementation of the Al-assisted detection and defense
methods in our sample application and presents measurable outcomes. Each vulnerability type
was tested using both traditional methods and ChatGPT-enhanced workflows.
ChatGPT identified SQL injection in the string-concatenated query and recommended
using parameterized queries [5]
SQL Injection Case
Vulnerable Code:
python
@app.route('/search’)
def search():
username = request.args.get('username’)
query = f"SELECT * FROM users WHERE username = '{username}""
result = db.execute(query).fetchall()
return render_template('result.html’, result=result)
ChatGPT Review:
e Identified direct string concatenation.
e Suggested parameterized queries.
Secure Version Suggested by ChatGPT:

INNOVATIVE «Zamonaviy dunyoda ilm-fan va texnologiya» nomli
ACADSNMY ilmiy-amaliy konferensiya

python
@app.route('/search")
def search():
username = request.args.get('username’)
query = "SELECT * FROM users WHERE username = ?"
result = db.execute(query, (username,)).fetchall()
return render_template('result.html’, result=result)
Result:
¢ SQLi vulnerability was successfully mitigated with ChatGPT’s suggestion.
e OWASP ZAP score improvement: from 2.1 (vulnerable) — 4.8 (secure)[6].
XSS Case
ChatGPT simulated an XSS attack using a basic <script> payload, which is a common
method for verifying reflected XSS [8].
Vulnerable Code:
python
@app.route('/comment’, methods=['"POST'])
def comment():
text = request.form|['comment']
return f"Thanks for your comment: {text}"
ChatGPT Review:
e Detected lack of input sanitization.
e Recommended escaping HTML characters.
Secure Version:
python
import html
@app.route('/comment’, methods=["POST'])
def comment():
text = html.escape(request.form|['comment'])
return f"Thanks for your comment: {text}"
Result:
7 XSS vector blocked using simple HTML escaping.

M1 Payload like <script>alert(1)</script> was rendered harmless.
False positives: 0 with ChatGPT review vs. 2 with traditional scanner

To defend against brute-force attacks, the rate-limiting example was built based on Flask-
Limiter documentation [10].

Brute-force Login Case

To defend against brute-force attacks, the rate-limiting example was built based on Flask-
Limiter documentation [10].

Vulnerable Code:

Python

@app.route('/login’, methods=['"POST'])

deflogin():

username = request.form['username’]

INNOVATIVE «Zamonaviy dunyoda ilm-fan va texnologiya» nomli
ACADSNMY ilmiy-amaliy konferensiya

password = request.form['password’]
if db.check_user(username, password):
return redirect('/dashboard")
return "Invalid login"
ChatGPT Suggestions:
e Add rate limiting via Flask-Limiter
o Use account lockout after multiple failures
Enhanced Secure Code:
python
from flask_limiter import Limiter
limiter = Limiter(app)

@app.route('/login’, methods=['"POST'])
@limiter.limit("5 per minute")
deflogin():
same logic...
Result:
</ Repeated login attempts from same IP were throttled. Blocking threshold reached after 5
attempts — verified with curl[10].

Summary of Results:

Attack Type Detection by ChatGPT Fix Suggested Effectiveness

SQL Injection < High Accuracy </ Param Queries < 95% reduction
XSS </ Immediate < Escaping HTML | <7 100% blocked

Brute-force <« Partial Automation < Rate Limiting « Delay enforced

Overall, the vulnerability count in our test application decreased from 6 critical issues to
just 1 after integrating ChatGPT-generated recommendations and confirming results using
OWASP ZAP [6].

Effectiveness of ChatGPT in Vulnerability Management

The results demonstrate that ChatGPT can act as a valuable assistant in both identifying
and resolving security vulnerabilities during web application development. The most notable
strengths were:

. Contextual Understanding: ChatGPT does not rely on pattern-matching alone — it
understands code structure, variable naming, and logic.
. Security Recommendations: It offers practical and syntactically correct code fixes.

. Versatility: It can simulate attacks (like XSS or SQLi payloads) or play the defender by
improving code.

Importantly, ChatGPT’s suggestions aligned with OWASP-recommended practices, such
as using parameterized queries and input sanitization.

Advantages over Traditional Tools

‘ ‘ ‘ INNOVATIVE «Zamonaviy dunyoda ilm-fan va texnologiya» nomli

ACAD=MY ilmiy-amaliy konferensiya
Feature Traditional Tools ChatGPT
Static code analysis ¥ Yes Yes
Code refactoring X No Yes
Vulnerability simulation </ Partial ¥ Yes
Real-time advice X No ¥ Yes
Language-specific flexibility A Limited < Broad (Python, PHP, JS, etc.)

While tools like OWASP ZAP or SonarQube are powerful in identifying surface-level
issues, they often lack the flexibility to explain or fix them in a human-understandable manner.
ChatGPT fills this gap[14].

Limitations
Despite its strengths, ChatGPT is not without shortcomings:
No runtime testing: It doesn't execute code or detect runtime flaws.

Depends on prompt quality: Poorly framed prompts lead to weak results.

May suggest insecure defaults: Without proper context, it could miss edge cases.

Model hallucination: Occasionally, it may invent non-existent libraries or misinterpret
logic.

Unlike traditional tools that only flag issues, ChatGPT can generate secure code

alternatives in real-time [5]. Still, there is the risk of Al hallucination or over-simplified

assumptions without context [14].

Ethical Considerations

The dual-use nature of ChatGPT must be carefully managed. Just as it can help defend
systems, it can also generate realistic attack payloads if prompted maliciously. Developers and
security professionals must use Al responsibly and ensure usage complies with ethical and legal
boundaries.

Conclusion

As web applications become increasingly integral to modern life, the risks they face from
evolving cyber threats also grow. This paper has demonstrated that ChatGPT, when properly
prompted and integrated, offers significant value in the early detection and mitigation of three
major vulnerability categories: SQL Injection, Cross-Site Scripting (XSS), and brute-force login
attacks[6][11].

By using ChatGPT for both static code analysis and attack simulation, developers and
penetration testers can identify security flaws earlier in the development cycle and apply
industry-recommended fixes with minimal effort. The experiments show that:

e ChatGPT reduces false positives,

o Generates secure code examples in context,

o Simulates attack payloads effectively, and

o Strengthens application defenses when used alongside traditional tools.

However, ChatGPT is not a replacement for dedicated vulnerability scanners or runtime
security testing platforms. Instead, it should be seen as a smart augmentation — a second pair
of intelligent eyes that helps teams write and secure code more responsibly.

INNOVATIVE «Zamonaviy dunyoda ilm-fan va texnologiya» nomli
ACADSNMY ilmiy-amaliy konferensiya

As Al models evolve, so too will their usefulness in cybersecurity. Future work could
explore:
e Integrating ChatGPT into CI/CD pipelines[15],
e Developing security-specific LLMs trained on vulnerability databases,
Creating multilingual security advice systems for global developer communities.

References:
Hcnosib3yemas imTepaTypa:

Foydalanilgan adabiyotlar:
1. Rani, S, etal. (2023). "LLMs for Vulnerability Classification." Al & Security Letters.
2. Bhandari, R, Sharma, A. (2022). "Al-Driven Web Application Security Testing."
International Journal of Computer Applications.
3. Park Y, Kim,]. (2020). "Detecting Cross-site Scripting Using LSTM-based Deep Learning."
Journal of Information Security.
4. Singh, K. et al. (2023). "Reinforcement Learning for Brute-force Attack Simulation." IEEE
Transactions on Cybersecurity.
5. Tan, Z., Chen, Y. (2023). "ChatGPT as a Secure Coding Assistant: An Empirical Study."
Proceedings of the ACM Conference on Al & Security.
6. OWASP (2023). "OWASP Top 10 Web Application Security Risks."
https://owasp.org/Top10
7. OpenAl (2023). "ChatGPT Model Documentation." https://platform.openai.com
8. Mohan, S. (2022). "Preventing XSS Attacks in Flask Applications." CyberDefense Magazine.
9. Kumar, A, Mehta, P. (2022). "Understanding SQLi and Prepared Statements." Secure Code
Review Journal.
10. Flask-Limiter Documentation (2023). https://flask-limiter.readthedocs.io
11. OWASP ZAP Tool Documentation. https://owasp.org/www-project-zap
12. Burp Suite User Guide. https://portswigger.net

13. NIST (2022). "Framework for Secure Software Development."
14. Dastoor, R. (2021). "Ethical Implications of Dual-Use Al Tools." Journal of Responsible
Technology.

https://platform.openai.com/
https://flask-limiter.readthedocs.io/
https://portswigger.net/

