GREEN'S FUNCTION OF THE LAPLACE OPERATOR FOR A BALL
Main Article Content
Аннотация:
This material examines the key concepts of mathematical physics - the Green's function and the Laplace operator, and their application for solving problems related to the distribution of potentials and fields in various physical systems. Particular attention is paid to the study of the properties of the Green's function of the Laplace operator for a sphere and its use in solving practical problems.
Article Details
Как цитировать:
Библиографические ссылки:
Sveshnikov, A.N. Bogolyubov, V.V. Kravtsov Lectures on mathematics physics. M: Moscow University Publishing House, 2004.
A.N. Bogolyubov, V.V. Kravtsov Problems in mathematical physics. M: Moscow University Publishing House, Science Publishing House, 1998.
Vladimirov V. V., Zharinov V. V. Equations of mathematical physics. M.:FISMATLITU, 2004.
Vladimirov BC Equations of mathematical physics. M.: Nauka, 1986.
N. S. Koshlyakov, E. B. Gliner, M. M. Smirnov Partial equations derivatives of mathematical physics. M.: “Higher School”, 1970.
B.M. Budak, A.A. Samarsky, A.N. Tikhonov, Collection of problems in mathematical physics, M.: FIZMATLIT, 2004
A.N. Tikhonov, A.A. Samarsky, Equations of mathematical physics, M.: Moscow State University Publishing House, 1998
N.N. Mirolyubov, M.V. Kostenko, M.L. Levinshtein, N.N. Tikhodeev, Methods for calculating electrostatic fields, M.: “Higher School”, 1963
F.M. Morse, G. Feshbach, Methods of Theoretical Physics, vol.1
A.G. Sveshnikov, A.N. Tikhonov, Theory of functions of a complex variable. M.: FIZMATLIT, 2001.
M.A. Lavrentiev, B.V. Shabat, Methods of the theory of complex functions variable variable. Gostekhizdat, 1951
E.V. Zakharov, I.V. Dmitrieva, S.I. Orlik, Mathematical equations physics. Collection of problems. Moscow State University named after M.V. Lomonosov, Faculty of Computational Mathematics and Cybernetics. Moscow, 2009
S.G. Kalashnikov, Electricity. M.: Fizmatlit, 2003.