METHODS AND ALGORITHMS FOR SEPARATION OF TEXT WRITTEN IN BRAILLE INTO CLASSES USING NEURAL NETWORK TECHNOLOGIES

Main Article Content

Аннотация:

Handwritten text recognition is a type of recognition embedded in character recognition technology, and some basic data processing technologies include the recognition of information written by hand or on a special writing device, such as financial statements, zip codes, braille, and various calculations. In 1998, Lekun et al.

Article Details

Как цитировать:

Akhatov , A. ., & Ulugmurodov , A. . (2022). METHODS AND ALGORITHMS FOR SEPARATION OF TEXT WRITTEN IN BRAILLE INTO CLASSES USING NEURAL NETWORK TECHNOLOGIES. Евразийский журнал математической теории и компьютерных наук, 2(11), 4–8. извлечено от https://in-academy.uz/index.php/EJMTCS/article/view/4248

Библиографические ссылки:

Akhatov Akmal Rustamovich, Kayumov Oybek Achilovich, Ulug'murodov Shoh Abbos Baxodir ugli. Scientific and theoretical basis of development and introduction of innovative methods in inclusive education 2021// Universum: психология и образование 7 (85) // 46-48. Общество с ограниченной ответственностью «Международный центр науки и образования»

M. Xin and Y. Wang, Research on image classification model based on deep convolution neural network, EURASIP Journal on Image and Video Processing, vol. 2019, no. 1, 11 pages, 2019.

Akhatov, A. R., and Ulugmurodov Sh AB Qayumov ОA. "Working with robot simulation using ros and gazebo in inclusion learning." Фан, таълим ва ишлаб чикариш интсграциясида ракамли иктисодиёт истикболлари” республика илмий-техник анжуман, УзМУ Жиззах филиали (2021): 5-6.

E. Kremic and A. Subasi, Performance of random forest and SVM in face recognition, International Arab Journal of Infor-mation Technology, vol. 13, no. 2, pp. 287293, 2016.

Ахатов, А., & Улугмуродов, Ш. А. (2022). Minimum width trees and prim algorithm using artificial intelligence. Zamonaviy innovatsion tadqiqotlarning dolzarb muammolari va rivojlanish tendensiyalari: yechimlar va istiqbollar, 1(1), 141-144.

B. C. Ko, S. H. Kim, and J. Y. Nam, X-ray image classification using random forests with local wavelet-based CS-local binary patterns, Journal of Digital Imaging, vol. 24, no. 6, pp. 1141 1151, 2011.

J. Xia, N. Falco, J. A. Benediktsson, P. Du, and J. Chanussot, Hyperspectral image classification with rotation random forest via KPCA, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 10, no. 4, pp. 1601 1609, 2017.

M. Han, X. Zhu, and W. Yao, Remote sensing image classifi-cation based on neural network ensemble algorithm, Neuro-computing, vol. 78, no. 1, pp. 133138, 2012.