LEE-YANG TEOREMASINI N=2 HOLAT UCHUN ISBOTLASH
Main Article Content
Аннотация:
Matematik fizika va kompleks tahlilda o‘zaro bog‘liq ko‘plab nazariyalar mavjud bo‘lib, ular orasida Li-Yang teoremasi alohida o‘rin tutadi. Bu teorema statistik fizika va fazaviy o‘tishlar nazariyasida muhim rol o‘ynaydi. Polinomlarning kompleks tekislikdagi ildizlarini tahlil qilish orqali fizik tizimlarning xatti-harakatini o‘rganish imkonini beradi. Shuningdek, bu teorema fizikada termodinamik limit va holat o‘tishlarining nazariy asosi sifatida ko‘riladi. Li-Yang teoremasining asosiy ahamiyati, u kompleks o‘zgaruvchilar polinomining ildizlarini geometrik jihatdan chegaralaydi va statistik tizimlarning xususiyatlarini aniqlashga yordam beradi. Ushbu tadqiqotning asosiy maqsadi Li-Yang teoremasining n=2 va n=3 hollar uchun matematik isbotini batafsil keltirish va uning statistik fizika bilan bog‘liq ahamiyatini o‘rganishdan iboratdir.
Article Details
Как цитировать:
Библиографические ссылки:
Preston, Gibbs-states-on-countable-sets
RIJEI.,IÆ, D. (1971 a). Extension of the Lee—Yang circle theorem. Phys. Rev. Lett. 26, 303-304.
YANG, C. N. & LEE, T. D. (1952). Statistical theory of equations of state and phase transitions. Phys. Rev. 87, 404—409
Fisher, M.E., Selke, W.: Phys. Rev. Lett. 44, 1502 (1980).
R. Kindermann and J. L. Snell, Markov random fields and their applications (American Mathematical Society, Providence, RI, USA, 1980)
SUOMELA, P. (1972). Factorings of finite dimensional distributions. Commentationes Physico-Mathematicae, 42, 1—13
Statistical Theory of Equations of State and Phase Transitions.
Theory of Condensation C. N. YANG AND T. D. LEE Institute for Advanced Study, Princeton, Kern Jersey (Received March 31, 1952)
Lee Т. D., Yang С. N.. Statistical theory of equations of state and phase transitions I-II. "Phys. Rev.", 1952, v. 87, p. 404, 410;
Xуанг К., Статистическая механика, пер. с англ., М.. 1966. М. В. Фейгелъман.
Itzykson, Claude; Drouffe, Jean-Michel (1989), Statistical field theory. Vol. 1, Cambridge Monographs on Mathematical Physics, Cambridge University Press, ISBN 978-0-521-34058-8, MR 1175176
Knauf, Andreas (1999), "Number theory, dynamical systems and statistical mechanics", Reviews in Mathematical Physics, 11 (8): 1027–1060, Bibcode:1999RvMaP..11.1027K, CiteSeerX 10.1.1.184.8685, doi:10.1142/S0129055X99000325, ISSN 0129-055X, MR 1714352
Lee, T. D.; Yang, C. N. (1952), "Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model", Physical Review, 87 (3): 410–419, Bibcode:1952PhRv...87..410L, doi:10.1103/PhysRev.87.410, ISSN 0031-9007
Lieb, Elliott H.; Sokal, Alan D. (1981), "A general Lee-Yang theorem for one-component and multicomponent ferromagnets", Communications in Mathematical Physics, 80 (2): 153–179, Bibcode:1981CMaPh..80..153L, doi:10.1007/BF01213009, ISSN 0010-3616, MR 0623156, S2CID 59332042
Newman, Charles M. (1974), "Zeros of the partition function for generalized Ising systems", Communications on Pure and Applied Mathematics, 27 (2): 143–159, doi:10.1002/cpa.3160270203, ISSN 0010-3640, MR 0484184
Simon, Barry; Griffiths, Robert B. (1973), "The (φ4)2 field theory as a classical Ising model", Communications in Mathematical Physics, 33 (2): 145,164, Bibcode:1973CMaPh..33..145S, CiteSeerX 10.1.1.210.9639, doi:10.1007/BF01645626, ISSN 0010-3616, MR 0428998, S2CID 123201243
Yang, C. N.; Lee, T. D. (1952), "Statistical Theory of Equations of State and Phase Transitions. I. Theory of Condensation", Physical Review, 87 (3): 404–409, Bibcode:1952PhRv...87..404Y, doi:10.1103/PhysRev.87.404, ISSN 0031-9007