METRIZABILITY OF TOPOLOGICAL SPACES AND THEIR COMPACT PROPERTIES

Main Article Content

Аннотация:

This article discusses the conditions under which a topological space is metrizable and how this relates to compactness. Key metrization theorems, such as those by Urysohn and Nagata-Smirnov, are examined. The article also explores the role of compactness in metrizable spaces, supported by examples like the Sorgenfrey line and Cantor set. Applications in analysis, computer science, and control theory demonstrate the practical importance of these concepts.

Article Details

Как цитировать:

Sabırbaeva, E. (2025). METRIZABILITY OF TOPOLOGICAL SPACES AND THEIR COMPACT PROPERTIES. Евразийский журнал математической теории и компьютерных наук, 5(6), 32–35. извлечено от https://in-academy.uz/index.php/EJMTCS/article/view/56233

Библиографические ссылки:

LLESHI POLLOZHANI, F., RASIMI, K., SADIKI, F., & BEXHETI, B. (2022). METRIZABILITY OF TOPOLOGICAL SPACES. Journal of Natural Sciences and Mathematics of UT, 7(13-14), 114-120.

Shravan, K., Tripathy, B. C., & Pandu, M. (2021). Metrizability of multiset topological spaces. SERIES III-MATEMATICS, INFORMATICS, PHYSICS, 13(2), 683-696.

Когаловский, С. Р. (2022). О ПРОПЕДЕВТИКЕ КУРСА ТОПОЛОГИИ. In Современные проблемы и перспективы обучения математике, физике, информатике в школе и вузе (pp. 27-30).

Савельев, В. М. (2019). ОСОБЕННОСТИ ОБУЧЕНИЯ ТОПОЛОГИИ ДЛЯ ПОВЫШЕНИЯ КОМПЕТЕНТНОСТИ БУДУЩИХ УЧИТЕЛЕЙ МАТЕМАТИКИ. In Современный учитель дисциплин естественнонаучного цикла (pp. 81-83).

Юнусов, Г. Г., & Болтаев, Х. Х. (2024). Описание и категорные свойства функтора полуаддитивных функционалов. Монография.-Tашкент:«NIF MSH», 2024.–87 стр.