КОМПОНЕНТЫ И МЕТАБОЛИТЫ, ПРОИСХОДЯЩИЕ ИЗ КИШЕЧНОЙ МИКРОБИОТЫ, В ПРОГРЕССИРОВАНИИ НЕАЛКОГОЛЬНОЙ ЖИРОВОЙ БОЛЕЗНИ ПЕЧЕНИ

##plugins.themes.bootstrap3.article.main##

Abstrak:

Человеческая кишечная микробиота все чаще признается важным фактором, влияющим на неалкогольную жировую болезнь печени. Помимо изменений в составе кишечной микробиоты, компоненты и метаболиты, производимые кишечными бактериями, становятся важными регуляторами патологических процессов, связанных с неалкогольной жировой болезнью печени. Надежные данные показывают, что кишечная микробиота вырабатывает различные биоактивные вещества, которые взаимодействуют с клетками печени через воротную вену.

##plugins.themes.bootstrap3.article.details##

##submission.citations##:

Younossi Z.M., Koenig A.B., Abdelatif D., Fazel Y., Henry L., Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73–84.

Buzzetti E., Pinzani M., Tsochatzis E.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD) Metabolism. 2016;65:1038–1048.

Zhu L., Baker R.D., Baker S.S. Gut microbiome and nonalcoholic fatty liver diseases. Pediatr. Res. 2015;77:245–251.

Harte A.L., da Silva N.F., Creely S.J., McGee K.C., Billyard T., Youssef-Elabd E.M., Tripathi G., Ashour E., Abdalla M.S., Sharada H.M., et al. Elevated endotoxin levels in non-alcoholic fatty liver disease. J. Inflamm. 2010;7:15.

Fukunishi S., Sujishi T., Takeshita A., Ohama H., Tsuchimoto Y., Asai A., Tsuda Y., Higuchi K. Lipopolysaccharides accelerate hepatic steatosis in the development of nonalcoholic fatty liver disease in Zucker rats. J. Clin. Biochem. Nutr. 2014;54:39–44.

Pang J., Xu W., Zhang X., Wong G.L., Chan A.W., Chan H.Y., Tse C.H., Shu S.S., Choi P.C., Chan H.L., et al. Significant positive association of endotoxemia with histological severity in 237 patients with non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2017;46:175–182.

Levels J.H., Marquart J.A., Abraham P.R., van den Ende A.E., Molhuizen H.O., van Deventer S.J., Meijers J.C. Lipopolysaccharide is transferred from high-density to low-density lipoproteins by lipopolysaccharide-binding protein and phospholipid transfer protein. Infect. Immun. 2005;73:2321–2326.

Roncon-Albuquerque R., Jr., Moreira-Rodrigues M., Faria B., Ferreira A.P., Cerqueira C., Lourenco A.P., Pestana M., von Hafe P., Leite-Moreira A.F. Attenuation of the cardiovascular and metabolic complications of obesity in CD14 knockout mice. Life Sci. 2008;83:502–510.

Wan X., Xu C., Yu C., Li Y. Role of NLRP3 Inflammasome in the Progression of NAFLD to NASH. Can. J. Gastroenterol. Hepatol. 2016;2016:6489012.

McDonald C., Inohara N., Nunez G. Peptidoglycan signaling in innate immunity and inflammatory disease. J. Biol. Chem. 2005;280:20177–20180.

Ehses J.A., Meier D.T., Wueest S., Rytka J., Boller S., Wielinga P.Y., Schraenen A., Lemaire K., Debray S., Van Lommel L., et al. Toll-like receptor 2-deficient mice are protected from insulin resistance and beta cell dysfunction induced by a high-fat diet. Diabetologia. 2010;53:1795–1806.

Kawasaki A., Karasudani Y., Otsuka Y., Hasegawa M., Inohara N., Fujimoto Y., Fukase K. Synthesis of diaminopimelic acid containing peptidoglycan fragments and tracheal cytotoxin (TCT) and investigation of their biological functions. Chemistry. 2008;14:10318–10330.

Nonogaki K., Moser A.H., Pan X.M., Staprans I., Grunfeld C., Feingold K.R. Lipoteichoic acid stimulates lipolysis and hepatic triglyceride secretion in rats in vivo. J. Lipid Res. 1995;36:1987–1995.

Osawa Y., Iho S., Takauji R., Takatsuka H., Yamamoto S., Takahashi T., Horiguchi S., Urasaki Y., Matsuki T., Fujieda S. Collaborative action of NF-kappaB and p38 MAPK is involved in CpG DNA-induced IFN-alpha and chemokine production in human plasmacytoid dendritic cells. J. Immunol. 2006;177:4841–4852.

Minton K. LC3 anchors TLR9 signalling. Nat. Rev. Immunol. 2018;18:418–419.

Miura K., Kodama Y., Inokuchi S., Schnabl B., Aoyama T., Ohnishi H., Olefsky J.M., Brenner D.A., Seki E. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology. 2010;139:323–334.e7.

Anand D., Chaudhuri A. Bacterial outer membrane vesicles: New insights and applications. Mol. Membr. Biol. 2016;33:125–137.

Den Besten G., van Eunen K., Groen A.K., Venema K., Reijngoud D.J., Bakker B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013;54:2325–2340.

Cornall L.M., Mathai M.L., Hryciw D.H., McAinch A.J. Diet-induced obesity up-regulates the abundance of GPR43 and GPR120 in a tissue specific manner. Cell Physiol. Biochem. 2011;28:949–958.

Bjursell M., Admyre T., Goransson M., Marley A.E., Smith D.M., Oscarsson J., Bohlooly Y.M. Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab. 2011;300:E211–E220.

Bansal T., Alaniz R.C., Wood T.K., Jayaraman A. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc. Natl. Acad. Sci. USA. 2010;107:228–233.

Beaumont M., Neyrinck A.M., Olivares M., Rodriguez J., de Rocca Serra A., Roumain M., Bindels L.B., Cani P.D., Evenepoel P., Muccioli G.G., et al. The gut microbiota metabolite indole alleviates liver inflammation in mice. FASEB J. 2018

Zelante T., Iannitti R.G., Cunha C., De Luca A., Giovannini G., Pieraccini G., Zecchi R., D’Angelo C., Massi-Benedetti C., Fallarino F., et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013;39:372–385.

Taoka H., Yokoyama Y., Morimoto K., Kitamura N., Tanigaki T., Takashina Y., Tsubota K., Watanabe M. Role of bile acids in the regulation of the metabolic pathways. World J. Diabetes. 2016;7:260–270.

Wahlstrom A., Sayin S.I., Marschall H.U., Backhed F. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metab. 2016;24:41–50.

Yang Z.X., Shen W., Sun H. Effects of nuclear receptor FXR on the regulation of liver lipid metabolism in patients with non-alcoholic fatty liver disease. Hepatol. Int. 2010;4:741–748.

Lou G., Ma X., Fu X., Meng Z., Zhang W., Wang Y.D., Van Ness C., Yu D., Xu R., Huang W. GPBAR1/TGR5 mediates bile acid-induced cytokine expression in murine Kupffer cells. PLoS ONE. 2014;9:e93567.

Barrea L., Annunziata G., Muscogiuri G., Di Somma C., Laudisio D., Maisto M., de Alteriis G., Tenore G.C., Colao A., Savastano S. Trimethylamine-N-oxide (TMAO) as Novel Potential Biomarker of Early Predictors of Metabolic Syndrome. Nutrients. 2018;10:1971.

Zhu H.-l., Tan X.-Y., Liu Y., Chen X.-L. Increased circulating trimethylamine N-oxide, a gut-flora-dependent metabolite of choline and betaine in nonalcoholic fatty liver disease is associated with high serum bile acids. FASEB J. 2016;30:272-2.

Koeth R.A., Wang Z., Levison B.S., Buffa J.A., Org E., Sheehy B.T., Britt E.B., Fu X., Wu Y., Li L., et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013;19:576–585.

Pandey K.B., Rizvi S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009;2:270–278.