BROWNIAN DYNAMICS SIMULATIONS OF INTRACELLULAR TRANSPORT

Main Article Content

Аннотация:

Brownian dynamics simulations of intracellular transport constitute a powerful computational tool for examining the motion and interactions of biomolecules within the highly complex cellular environment. By applying principles of stochastic processes—particularly fractional Brownian motion—these simulations enable researchers to reproduce the intricate transport behaviors exhibited by proteins, vesicles, and other molecular structures in crowded and viscous intracellular spaces. This approach is especially valuable because it captures both sub-diffusive and super-diffusive movement patterns through the use of a tunable Hurst exponent, allowing for realistic modeling of cargo transport by motor proteins along cytoskeletal filaments as well as transport across the nuclear pore complex during nucleocytoplasmic exchange.

Article Details

Как цитировать:

Malikov, M. . (2025). BROWNIAN DYNAMICS SIMULATIONS OF INTRACELLULAR TRANSPORT. Естественные науки в современном мире: теоретические и практические исследования, 4(15), 18–21. извлечено от https://in-academy.uz/index.php/zdtf/article/view/68035

Библиографические ссылки:

Metzler, R., Jeon, J.-H., Cherstvy, A. G., & Barkai, E. (2014). Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing. Physical Chemistry Chemical Physics, 16(44), 24128–24164.

Tabei, S. M., Burov, S., Kim, H. Y., Kuznetsov, A., Huynh, T., Jureller, J., et al. (2013). Intracellular transport dynamics revealed by fractional Brownian motion and diffusion maps. Proceedings of the National Academy of Sciences, 110(13), 4911–4916.

Meroz, Y., & Sokolov, I. M. (2015). A toolbox for determining subdiffusive mechanisms. Physics Reports, 573, 1–29.

Hofling, F., & Franosch, T. (2013). Anomalous transport in the crowded world of biological cells. Reports on Progress in Physics, 76(4), 046602.

Ermak, D. L., & McCammon, J. A. (1978). Brownian dynamics with hydrodynamic interactions. The Journal of Chemical Physics, 69(4), 1352–1360.

Galle, J., Hoffmann, M., & Aust, G. (2009). From single cells to tissue architecture—a bottom-up approach to modelling the spatio-temporal organization of complex multi-cellular systems. Journal of Mathematical Biology, 58, 261–283.

Popov, N., Medvedev, N., Stukowski, M., & Paliy, M. (2020). Brownian dynamics simulations of intrinsically disordered proteins: hydrodynamic interactions and scaling behavior. Journal of Chemical Theory and Computation, 16(3), 1740–1754.

Bestembayeva, A., Kramer, A., Labokha, A. A., Osmanovic, D., Youssef, G., Fassati, A., et al. (2015). Nuclear pore complex as an entropic barrier to cargo transport. Biophysical Journal, 108(2), 391–400.