MEVA VA SABZAVOTLARNI SARALASHDA MEXANIK, OPTIK VA SUN’IY INTELLEKTGA ASOSLANGAN TEXNOLOGIYALAR TAHLILI
Main Article Content
Аннотация:
Ushbu maqolada oliy ta’lim jarayonida tanqidiy fikrlashni rivojlantirish masalasi nazariy va amaliy jihatdan tahlil qilinadi. Tadqiqotda O‘zbekiston Respublikasidagi ta’lim islohotlari, kredit-modul tizimi, interfaol metodlar va raqamli ta’lim texnologiyalari tanqidiy fikrlash kompetensiyalarini shakllantirishdagi ahamiyati o‘rganiladi. Konstruktivistik, kompetensiyaviy, muammoli va refleksiv pedagogik yondashuvlar talabalarning mustaqil va tahliliy fikrlash qobiliyatlarini rivojlantirishda samarali vosita sifatida baholandi. Tadqiqot natijalari shuni ko‘rsatadiki, pedagogik yondashuvlarning uyg‘unligi, interfaol metodlar va raqamli texnologiyalar tanqidiy fikrlashni tizimli va barqaror rivojlantirishga xizmat qiladi. Maqola oliy ta’lim tizimida raqobatbardosh va innovatsion fikrlovchi mutaxassislarni tayyorlash uchun strategik pedagogik yechimlarni aniqlashga qaratilgan.
Article Details
Как цитировать:
Библиографические ссылки:
Kader, A. A., & Rolle, R. S. (2020). The role of post-harvest management in assuring the quality and safety of horticultural produce. FAO Agricultural Services Bulletin. Rome: FAO.
Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., & Blasco, J. (2020). Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food and Bioprocess Technology, 13(3), 387–403.
https://doi.org/10.1007/s11947-020-02444-9
Li, J., Rao, X., Ying, Y., & Fu, X. (2021). Quality evaluation of fruits and vegetables based on machine vision: A review. Journal of Food Engineering, 292, 110252.
https://doi.org/10.1016/j.jfoodeng.2020.110252
Zhang, B., Huang, W., Li, J., Zhao, C., Fan, S., Wu, J., & Liu, C. (2021). Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review. Food Research International, 146, 110360.
https://doi.org/10.1016/j.foodres.2021.110360
Unitec S.p.A. (2021). Advanced sorting and grading technologies for fruits and vegetables. Official technical documentation. Italy.
Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., & Blasco, J. (2020). Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food and Bioprocess Technology, 13(3), 387–403.
Zhang, B., Huang, W., Li, J., Wu, J., & Liu, C. (2021). Computer vision techniques for fruit and vegetable quality evaluation: A review. Food Research International, 146, 110360.
Blasco, J., Cubero, S., & Gómez-Sanchis, J. (2020). Automatic quality inspection of fruits and vegetables using machine vision systems. Computers and Electronics in Agriculture, 176, 105634.
https://doi.org/10.1016/j.compag.2020.105634
Greefa B.V. (2021). CombiSort technology: Internal quality and defect detection solutions. Technical white paper. Netherlands.
DT Dijkstra B.V. (2022). Optical sorting solutions for root vegetables. Company technical documentation. Netherlands.
Zhang, Y., Wu, L., Chen, J., & Zhao, Y. (2021). Deep learning-based defect detection for fruit sorting systems. Biosystems Engineering, 203, 36–48.
https://doi.org/10.1016/j.biosystemseng.2021.01.004
FAO. (2022). Digital technologies in agriculture and food systems. Food and Agriculture Organization of the United Nations.
