YANGI DORI VOSITALARINING YARATISH ISTIQBOLLARI
Main Article Content
Аннотация:
Ushbu maqolada yangi dori vositalarining yaratish istiqbollari, bosqichlari, klinik oldi, klinik sinovlar bosqichi, xalqaro standartlar asosida izlanishlar olib borilishi to‘g‘risida ma’lumotlar keltirilgan. Bundan tashqari dori vositalarining kompyuter modellashtirish usullari, nishon organlar va retseptorlarga ta’sirini, gen injinerligi usullaridan foydalangan holda struktur faolliklari bo‘yicha axborot berilgan. O‘zbekiston Respublikasida yangi dori vositalarini yaratishdagi kamchiliklar haqida qisqacha xulosalar keltirilgan.
Ключевые слова:
Article Details
Как цитировать:
Библиографические ссылки:
Taylor, R. D., Jewsbury, P. J., & Essex, J. W. (2002). A review of protein-small molecule docking methods. Journal of computer-aided molecular design, 16(3), 151–166. https://doi.org/10.1023/a:1020155510718
Zsoldos Z., Sabo I., Sabo Z., Johnson A. P. // J. Mol. Struct. (Theochem). 2003. Vol. 666-667. Р. 659.
Sippl W. (2002). Development of biologically active compounds by combining 3D QSAR and structure-based design methods. Journal of computer-aided molecular design, 16(11), 825–830. https://doi.org/10.1023/a:1023888813526
Seifert M. H. J. , Wolf K., Vitt D. // Biosilico. 2003. Vol. 1. № 4. Р. 143.
Stahl M. // Perspectives Drug Discov. Des. 2000. Vol. 20. № 1. Р. 83.
Shoichet, B. K., McGovern, S. L., Wei, B., & Irwin, J. J. (2002). Lead discovery using molecular docking. Current opinion in chemical biology, 6(4), 439–446. https://doi.org/10.1016/s1367-5931(02)00339-3
Zsoldos, Z., Reid, D., Simon, A., Sadjad, S. B., & Johnson, A. P. (2007). eHiTS: a new fast, exhaustive flexible ligand docking system. Journal of molecular graphics & modelling, 26(1), 198–212. https://doi.org/10.1016/j.jmgm.2006.06.002
Hawkins, P. C., Skillman, A. G., & Nicholls, A. (2007). Comparison of shape-matching and docking as virtual screening tools. Journal of medicinal chemistry, 50(1), 74–82. https://doi.org/10.1021/jm0603365
Mohan, V., Gibbs, A. C., Cummings, M. D., Jaeger, E. P., & DesJarlais, R. L. (2005). Docking: successes and challenges. Current pharmaceutical design, 11(3), 323–333. https://doi.org/10.2174/1381612053382106
Ghose A. K., Wendoloski J. J. // Perspectives Drug Discov. Des. 1998. Vol. 9-11. Р. 273.
Mason, J. S., Good, A. C., & Martin, E. J. (2001). 3-D pharmacophores in drug discovery. Current pharmaceutical design, 7(7), 567–597. https://doi.org/10.2174/1381612013397843
Kurogi, Y., & Güner, O. F. (2001). Pharmacophore modeling and three-dimensional database searching for drug design using catalyst. Current medicinal chemistry, 8(9), 1035–1055. https://doi.org/10.2174/0929867013372481
Dixon, S. L., Smondyrev, A. M., & Rao, S. N. (2006). PHASE: a novel approach to pharmacophore modeling and 3D database searching. Chemical biology & drug design, 67(5), 370–372. https://doi.org/10.1111/j.1747-0285.2006.00384.x
Patel, Y., Gillet, V. J., Bravi, G., & Leach, A. R. (2002). A comparison of the pharmacophore identification programs: Catalyst, DISCO and GASP. Journal of computer-aided molecular design, 16(8-9), 653–681. https://doi.org/10.1023/a:1021954728347
Jones D. A., Fitzpatrick F. A. // Curr. Opin. Chem. Biol. 1999. Vol. 3. № 1. Р. 71.
Lindsay M. A. (2005). Finding new drug targets in the 21st century. Drug discovery today, 10(23-24), 1683–1687. https://doi.org/10.1016/S1359-6446(05)03670-6
Matson R. Applying Genomic and Proteomic Microarray Technology in Drug Discovery. New York, 2005.
He, T., Jin Kim, Y., Heidbrink, J. L., Moore, P. A., & Ruben, S. M. (2006). Drug target identification and quantitative proteomics. Expert opinion on drug discovery, 1(5), 477–489. https://doi.org/10.1517/17460441.1.5.477
Kley N. (2004). Chemical dimerizers and three-hybrid systems: scanning the proteome for targets of organic small molecules. Chemistry & biology, 11(5), 599–608. https://doi.org/10.1016/j.chembiol.2003.09.017
Ambesi - Impiombato A., di Bernardo D. // Curr. Bioinform. 2006. Vol. 1. № 1. Р. 3.