СИММ-ДИХЛОРЭТАН (1,2-ДИХЛОРЭТАН) ДАН ВОДОРОД ХЛОРИД АЖРАЛИШ РЕАКЦИЯСИНИНГ КИНЕТИК ҚОНУНИЯТЛАРИНИ АНИҚЛАШ

Main Article Content

Аннотация:

Ишда винилхлорид ишлаб чиқаришда хлорли органик чиқиндиларининг муҳим таркибий қисмларини гидрохлорлаш учун каталитик мақбул тизими танланди. Водород хлориднинг ажралиб чиқиш реакциясида турли реакциянинг тезлигини оширувчи моддаларнинг фаол ҳамда танлаб таъсир этувчанлиги ҳақида маълумотлар келтирилди. Этиленнинг  водород хлорид иштирокида кислород билан оксидланишли хлорланиши учун учун мўлжалланган реакторининг ишлаш режимлари ҳисобланди, ҳосил бўлиш тезлигининг кинетик тенгламалари тузилди ва реакцияга киришаётган моддалар ва реакция маҳсулотлари ўртасидаги муносабатлар тенгламалари ўрганилди.

Article Details

Как цитировать:

Kurbanova, D. ., & Bobomurodova , S. . (2023). СИММ-ДИХЛОРЭТАН (1,2-ДИХЛОРЭТАН) ДАН ВОДОРОД ХЛОРИД АЖРАЛИШ РЕАКЦИЯСИНИНГ КИНЕТИК ҚОНУНИЯТЛАРИНИ АНИҚЛАШ. Евразийский журнал академических исследований, 3(12 Part 2), 178–188. извлечено от https://in-academy.uz/index.php/ejar/article/view/25225

Библиографические ссылки:

Flid M. R. Vinyl chloride technology: Present and future //Catalysis in Industry. – 2009. – Т. 1. – №. 4. – С. 285-293..

Davies C. J. et al. Vinyl chloride monomer production catalysed by gold: A review //Chinese Journal of Catalysis. – 2016. – Т. 37. – №. 10. – С. 1600-1607.

Lin R., Amrute A. P., Perez-Ramirez J. Halogen-mediated conversion of hydrocarbons to commodities //Chemical reviews. – 2017. – Т. 117. – №. 5. – С. 4182-4247.

Li X. et al. Silicon carbide-derived carbon nanocomposite as a substitute for mercury in the catalytic hydrochlorination of acetylene //Nature communications. – 2014. – Т. 5. – №. 1. – С. 3688.

Shi D. et al. Catalytic activities of supported perovskite promoter catalysts La2NiMnO6–CuCl2/γ-Al2O3 and La1. 7K0. 3NiMnO6–CuCl2/γ-Al2O3 for ethane oxychlorination //Chemical Engineering Journal. – 2016. – Т. 288. – С. 588-595.

Malta G. et al. Identification of single-site gold catalysis in acetylene hydrochlorination //Science. – 2017. – Т. 355. – №. 6332. – С. 1399-1403.

Zhou Q. et al. The role of KCl in FeCl3–KCl/Al2O3 catalysts with enhanced catalytic performance for ethane oxychlorination //Dalton Transactions. – 2017. – Т. 46. – №. 31. – С. 10433-10439.

Sun Y. et al. Catalytic oxidation of hydrogen chloride to chlorine over Cu-K-Sm/γ-Al2O3 catalyst with excellent catalytic performance //Catalysis Today. – 2018. – Т. 307. – С. 286-292.

Scharfe M. et al. Oxychlorination–dehydrochlorination chemistry on bifunctional ceria catalysts for intensified vinyl chloride production //Angewandte Chemie. – 2016. – Т. 128. – №. 9. – С. 3120-3124.

Zipelli C. et al. Study of CuCl2 supported on SiO2 and Al2O3 //Zeitschrift für anorganische und allgemeine Chemie. – 1983. – Т. 502. – №. 7. – С. 199-208.

Lamberti C. et al. The chemistry of the oxychlorination catalyst: an in situ, time‐resolved XANES study //Angewandte Chemie International Edition. – 2002. – Т. 41. – №. 13. – С. 2341-2344.

Gianolio D. et al. Doped-CuCl2/Al2O3 catalysts for ethylene oxychlorination: Influence of additives on the nature of active phase and reducibility //Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. – 2012. – Т. 284. – С. 53-57.

Montebelli A. et al. Kinetic and modeling study of the ethylene oxychlorination to 1, 2-dichloroethane in fluidized-bed reactors //Industrial & Engineering Chemistry Research. – 2015. – Т. 54. – №. 39. – С. 9513-9524.

Vajglová Z. et al. Ethene oxychlorination over CuCl2/γ-Al2O3 catalyst in micro-and millistructured reactors //Journal of Catalysis. – 2018. – Т. 364. – С. 334-344.

Vajglová Z. et al. Influence of the support of copper catalysts on activity and 1, 2-dichloroethane selectivity in ethylene oxychlorination //Applied Catalysis A: General. – 2018. – Т. 556. – С. 41-51.

Rout K. R. et al. Highly active and stable CeO2-promoted CuCl2/Al2O3 oxychlorination catalysts developed by rational design using a rate diagram of the catalytic cycle //ACS Catalysis. – 2016. – Т. 6. – №. 10. – С. 7030-7039.

Fortini E. M., Garcia C. L., Resasco D. E. Stabilization of the active phase by interaction with the support in CuCl2 oxychlorination catalysts //Journal of Catalysis. – 1986. – Т. 99. – №. 1. – С. 12-18.

Muddada N. B. et al. Influence of additives in defining the active phase of the ethylene oxychlorination catalyst //Physical Chemistry Chemical Physics. – 2010. – Т. 12. – №. 21. – С. 5605-5618.

Muddada N. B. et al. The role of chlorine and additives on the density and strength of Lewis and Brønsted acidic sites of γ-Al2O3 support used in oxychlorination catalysis: A FTIR study //Journal of catalysis. – 2011. – Т. 284. – №. 2. – С. 236-246.

Leofanti G. et al. Alumina-supported copper chloride: 4. Effect of exposure to O2 and HCl //Journal of catalysis. – 2002. – Т. 205. – №. 2. – С. 375-381.

Fayzullaev, N.I, Bobomurodova, S.Y, Xolmuminova, D.A Physico-chemical and texture characteristics of Zn-Zr/VKTS catalyst//Journal of Critical Reviews, 2020, 7(7), стр. 917–920

F N Temirov, J Kh Khamroyev, N I Fayzullayev, G Sh Haydarov and M Kh Jalilov. Hydrothermal synthesis of zeolite HSZ-30 based on kaolin //IOP Conference Series: Earth and Environmental Science. – IOP Publishing, 2021. – Т. 839. – №. 4. – С. 042099.

Khamroyev, J.K., Akmalaiuly, K., Fayzullayev, N. Mechanical activation of navbahorsk bentonite and its textural and adsorption characteristics//News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 2022, 1(451), стр. 167–174.

Kurbanova D., Fayzullayev N., Bobomurodova S. Determination of optimal conditions and kinetic laws of hydrogen chloride separation reaction from simm-dichloroethane (1,2-dichloroethane)// E3S Web of Conferences 460, 10028 (2023) https://doi.org/10.1051/e3sconf/202346010028 BFT-2023

Fayzullayev N., Kurbanova D., Bobomurodova S. Obtaining vinyl chloride by oxychlorination of ethylene under the action of hydrogen chloride in the presence of oxygen // E3S Web of Conferences 460, 10023 (2023) https://doi.org/10.1051/e3sconf/202346010023 BFT-2023

Fajzullaev, N.I., Fajzullaev, O.O. Kinetic regularities in reaction of the oxidizing condensation of methane on applied oxide catalysts//Khimicheskaya Promyshlennost', 2004, (4), стр. 204–207

Muradov, K.M., Fajzullaev, N.I. Technology for producing the ethylene using the reaction of the oxidizing condensation of methane//Khimicheskaya Promyshlennost', 2003, (6), стр. 3–7

Sarimsakova, N.S., Fayzullaev, N.I., Musulmonov, N.X., Atamirzayeva, S.T., Ibodullayeva, M.N. Kinetics and mechanism of reaction for producing ethyl acetate from acetic acid//International Journal of Control and Automation, 2020, 13(2), стр. 373–382.

Omanov, B.S., Fayzullaev, N.I., Musulmonov, N.K., Xatamova, M.S., Asrorov, D.A.Optimization of vinyl acetate synthesis process//International Journal of Control and Automation, 2020, 13(1), стр. 231–238 Omanov, B.S., Fayzullaev, N.I., Xatamova, M.S. Vinyl acetate production technology//International Journal of Advanced Science and Technology, 2020, 29(3), стр. 4923–4930

Fayzullayev, N.I., Umirzakov, R.R., Pardaeva, S.B. Study of acetylating reaction of acetylene by gas chromatographic method//ACS National Meeting Book of Abstracts, 2005, 229(2)

Fajzullaev, N.I., Muradov, K.M. Investigation of reaction of catalytic vapor-phase synthesis of vinyl acetate on applied catalyst//Khimicheskaya Promyshlennost', 2004, (3), стр. 136–139