ИЗУЧЕНИЕ СЫРЬЕВЫХ МИНЕРАЛЬНЫХ РЕСУРСОВ УЗБЕКИСТАНА ДЛЯ ПОЛУЧЕНИЯ ЛЕГКОВЕСНЫХ КЕРАМИЧЕСКИХ МАТЕРИАЛОВ
Main Article Content
Аннотация:
Легковесные термостойкие и теплоизоляционные материалы являются эффективными строительными материалами, широко используемыми в строительстве. Для получения пористых теплоизоляционных материалов были изучены сырьевые материалы Узбекистана. В результате исследованний для получения пористых керамических материалов (“геополимеров”) были выбраны глинистые минеральные фазы месторождения Чанги Ташкентской области. На основе глауконита и диатомита месторождения Чанги были получены геополимеры с хорошо развитой пористой структурой.
Article Details
Как цитировать:
Библиографические ссылки:
Davidovits, J., 2018. Geopolymers Based on Natural and Synthetic Metakaolin a Critical Review, in: Proceedings of the 41st International Conference on Advanced Ceramics and Composites, Ceramic Engineering and Science Proceedings. pp. 201–214. https://doi.org/https://doi.org/10.1002/9781119474746.ch19
Davidovits, J., 2017. Geopolymers: Ceramic-Like Inorganic Polymers. J. Ceram. Sci. Technol. 8, 335–350. https://doi.org/10.4416/JCST2017-00038
Li, X., Bai, C., Qiao, Y., Wang, X., Yang, K., Colombo, P., 2022a. Preparation, properties and applications of fly ash-based porous geopolymers: A review. J. Clean. Prod. 359. https://doi.org/10.1016/j.jclepro.2022.132043
Li, X., Li, J., Bai, C., Zheng, T., Yang, K., Zhang, X., Qiao, Y., Colombo, P., 2022b. Preparation of porous slag-based geopolymer spheres by direct template route for pH buffering applications. Mater. Lett. 328, 133100. https://doi.org/10.1016/j.matlet.2022.133100
Masi, G., Rickard, W.D.A., Vickers, L., Bignozzi, M.C., Van Riessen, A., 2014. A comparison between different foaming methods for the synthesis of light weight geopolymers. Ceram. Int. 40, 13891–13902. https://doi.org/10.1016/j.ceramint.2014.05.108
Feng, J., Zhang, R., Gong, L., Li, Y., Cao, W., Cheng, X., 2015. Development of porous fly ash-based geopolymer with low thermal conductivity. Mater. Des. 65, 529–533. https://doi.org/10.1016/j.matdes.2014.09.024
Li, X., Liu, L., Bai, C., Yang, K., Zheng, T., Lu, S., Li, H., Qiao, Y., Colombo, P., 2023. Porous alkali-activated material from hypergolic coal gangue by microwave foaming for methylene blue removal. J. Am. Ceram. Soc. 106, 1473–1489. https://doi.org/10.1111/jace.18812
Li, X., Bai, C., Qiao, Y., Wang, X., Yang, K., Colombo, P., 2022a. Preparation, properties and applications of fly ash-based porous geopolymers: A review. J. Clean. Prod. 359. https://doi.org/10.1016/j.jclepro.2022.132043
Ascensão, G., Seabra, M.P., Aguiar, J.B., Labrincha, J.A., 2017. Red mud-based geopolymers with tailored alkali diffusion properties and pH buffering ability. J. Clean. Prod. 148, 23–30. https://doi.org/10.1016/j.jclepro. 2017.01.150
Bai, C., Li, H., Bernardo, E., Colombo, P., 2019. Waste-to-resource preparation of glass-containing foams from geopolymers. Ceram. Int. 45, 7196–7202. https://doi.org/10.1016/j.ceramint.2018.12.227
Zhang, Z., Provis, J.L., Wang, H., Bullen, F., Reid, A., 2013. Quantitative kinetic and structural analysis of geopolymers. Part 2. Thermodynamics of sodium silicate activation of metakaolin. Thermochim. Acta 565, 163–171. https://doi.org/10.1016/j.tca.2013.01.040
Panagiotopoulou, C., Kontori, E., Perraki, T., Kakali, G., 2007. Dissolution of aluminosilicate minerals and by-products in alkaline media. J. Mater. Sci. 42, 2967–2973. https://doi.org/10.1007/s10853-006-0531-8
Chen, L., Wang, Z., Wang, Y., Feng, J., 2016. Preparation and properties of alkali activated metakaolin-based geopolymer. Materials (Basel). 9, 1–12. https://doi.org/10.3390/ma9090767
Singh, B., Ishwarya, G., Gupta, M., Bhattacharyya, S.K., 2015. Geopolymer concrete: A review of some recent developments. Constr. Build. Mater. 85, 78–90. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2015.03.036
Bajare, D., Bumanis, G., Korjakins, A., 2014. New Porous Material Made from Industrial and Municipal Waste for Building Application. Mater. Sci. 20, 333–338. https://doi.org/10.5755/j01.ms.20.3.4330
Nawaz, M., Heitor, A., Sivakumar, M., 2020. Geopolymers in construction - recent developments. Constr. Build. Mater. 260, 120472. https://doi.org/10.1016/j.conbuildmat.2020.120472
Ng, C., Alengaram, U.J., Wong, L.S., Mo, K.H., Jumaat, M.Z., Ramesh, S., 2018. A review on microstructural study and compressive strength of geopolymer mortar, paste and concrete. Constr. Build. Mater. 186, 550–576.
Kriven, W.M., Leonelli, C., Provis, J.L., Boccaccini, A.R., Attwell, C., Ducman, V.S., Ferone, C., Rossignol, S., Luukkonen, T., van Deventer, J.S.J., Emiliano, J. V., Lombardi, J.E., 2024. Why geopolymers and alkali-activated materials are key components of a sustainable world: A perspective contribution. J. Am. Ceram. Soc. https://doi.org/10.1111/jace.19828
Kuenzel, C., Cisneros, J.F., Neville, T.P., Vandeperre, L.J., Simons, S.J.R., Bensted, J., Cheeseman, C.R., 2015. Encapsulation of Cs/Sr contaminated clinoptilolite in geopolymers produced from metakaolin. J. Nucl. Mater. 466, 94–99. https://doi.org/https://doi.org/10.1016/j.jnucmat.2015.07.034
Kim, B., Kang, J., Shin, Y., Yeo, T., Heo, J., Um, W., 2023. Effect of Si/Al molar ratio and curing temperatures on the immobilization of radioactive borate waste in metakaolin-based geopolymer waste form. J. Hazard. Mater. 458, 131884. https://doi.org/https://doi.org/10.1016/j.jhazmat.2023.131884
Jiang, C., Wang, A., Bao, X., Ni, T., Ling, J., 2020. A review on geopolymer in potential coating application: Materials, preparation and basic properties. J. Build. Eng. 32. https://doi.org/10.1016/j.jobe.2020.101734
Cong, P., Cheng, Y., 2021. Advances in geopolymer materials: A comprehensive review. J. Traffic Transp. Eng. (English Ed. 8, 283–314. https://doi.org/https://doi.org/10.1016/j.jtte.2021.03.004
Zhong, H., Zhang, M., 2022. 3D printing geopolymers: A review. Cem. Concr. Compos. 128. https://doi.org/10.1016/j.cemconcomp.2022.104455
Адилов Ж.К., Мирзаев А.Ж., Якубов С.И., Якубова Н.Д. Глауконит ва чанги кони масаласига доир. Горный вестник Узбекистана. № 1 (84) 2021. C. 43-47.