ИЗУЧЕНИЕ СЫРЬЕВЫХ МИНЕРАЛЬНЫХ РЕСУРСОВ УЗБЕКИСТАНА ДЛЯ ПОЛУЧЕНИЯ ЛЕГКОВЕСНЫХ КЕРАМИЧЕСКИХ МАТЕРИАЛОВ

Main Article Content

Аннотация:

Легковесные термостойкие и теплоизоляционные материалы являются эффективными строительными материалами, широко используемыми в строительстве. Для получения пористых теплоизоляционных материалов были изучены сырьевые материалы Узбекистана. В результате исследованний для получения пористых керамических материалов (“геополимеров”) были выбраны глинистые минеральные фазы месторождения Чанги Ташкентской области. На основе глауконита и диатомита месторождения Чанги были получены геополимеры с хорошо развитой пористой структурой.

Article Details

Как цитировать:

Рузимова, Ш., & Бабаханова, З. . (2024). ИЗУЧЕНИЕ СЫРЬЕВЫХ МИНЕРАЛЬНЫХ РЕСУРСОВ УЗБЕКИСТАНА ДЛЯ ПОЛУЧЕНИЯ ЛЕГКОВЕСНЫХ КЕРАМИЧЕСКИХ МАТЕРИАЛОВ. Евразийский журнал академических исследований, 4(12), 81–89. извлечено от https://in-academy.uz/index.php/ejar/article/view/41110

Библиографические ссылки:

Davidovits, J., 2018. Geopolymers Based on Natural and Synthetic Metakaolin a Critical Review, in: Proceedings of the 41st International Conference on Advanced Ceramics and Composites, Ceramic Engineering and Science Proceedings. pp. 201–214. https://doi.org/https://doi.org/10.1002/9781119474746.ch19

Davidovits, J., 2017. Geopolymers: Ceramic-Like Inorganic Polymers. J. Ceram. Sci. Technol. 8, 335–350. https://doi.org/10.4416/JCST2017-00038

Li, X., Bai, C., Qiao, Y., Wang, X., Yang, K., Colombo, P., 2022a. Preparation, properties and applications of fly ash-based porous geopolymers: A review. J. Clean. Prod. 359. https://doi.org/10.1016/j.jclepro.2022.132043

Li, X., Li, J., Bai, C., Zheng, T., Yang, K., Zhang, X., Qiao, Y., Colombo, P., 2022b. Preparation of porous slag-based geopolymer spheres by direct template route for pH buffering applications. Mater. Lett. 328, 133100. https://doi.org/10.1016/j.matlet.2022.133100

Masi, G., Rickard, W.D.A., Vickers, L., Bignozzi, M.C., Van Riessen, A., 2014. A comparison between different foaming methods for the synthesis of light weight geopolymers. Ceram. Int. 40, 13891–13902. https://doi.org/10.1016/j.ceramint.2014.05.108

Feng, J., Zhang, R., Gong, L., Li, Y., Cao, W., Cheng, X., 2015. Development of porous fly ash-based geopolymer with low thermal conductivity. Mater. Des. 65, 529–533. https://doi.org/10.1016/j.matdes.2014.09.024

Li, X., Liu, L., Bai, C., Yang, K., Zheng, T., Lu, S., Li, H., Qiao, Y., Colombo, P., 2023. Porous alkali-activated material from hypergolic coal gangue by microwave foaming for methylene blue removal. J. Am. Ceram. Soc. 106, 1473–1489. https://doi.org/10.1111/jace.18812

Li, X., Bai, C., Qiao, Y., Wang, X., Yang, K., Colombo, P., 2022a. Preparation, properties and applications of fly ash-based porous geopolymers: A review. J. Clean. Prod. 359. https://doi.org/10.1016/j.jclepro.2022.132043

Ascensão, G., Seabra, M.P., Aguiar, J.B., Labrincha, J.A., 2017. Red mud-based geopolymers with tailored alkali diffusion properties and pH buffering ability. J. Clean. Prod. 148, 23–30. https://doi.org/10.1016/j.jclepro. 2017.01.150

Bai, C., Li, H., Bernardo, E., Colombo, P., 2019. Waste-to-resource preparation of glass-containing foams from geopolymers. Ceram. Int. 45, 7196–7202. https://doi.org/10.1016/j.ceramint.2018.12.227

Zhang, Z., Provis, J.L., Wang, H., Bullen, F., Reid, A., 2013. Quantitative kinetic and structural analysis of geopolymers. Part 2. Thermodynamics of sodium silicate activation of metakaolin. Thermochim. Acta 565, 163–171. https://doi.org/10.1016/j.tca.2013.01.040

Panagiotopoulou, C., Kontori, E., Perraki, T., Kakali, G., 2007. Dissolution of aluminosilicate minerals and by-products in alkaline media. J. Mater. Sci. 42, 2967–2973. https://doi.org/10.1007/s10853-006-0531-8

Chen, L., Wang, Z., Wang, Y., Feng, J., 2016. Preparation and properties of alkali activated metakaolin-based geopolymer. Materials (Basel). 9, 1–12. https://doi.org/10.3390/ma9090767

Singh, B., Ishwarya, G., Gupta, M., Bhattacharyya, S.K., 2015. Geopolymer concrete: A review of some recent developments. Constr. Build. Mater. 85, 78–90. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2015.03.036

Bajare, D., Bumanis, G., Korjakins, A., 2014. New Porous Material Made from Industrial and Municipal Waste for Building Application. Mater. Sci. 20, 333–338. https://doi.org/10.5755/j01.ms.20.3.4330

Nawaz, M., Heitor, A., Sivakumar, M., 2020. Geopolymers in construction - recent developments. Constr. Build. Mater. 260, 120472. https://doi.org/10.1016/j.conbuildmat.2020.120472

Ng, C., Alengaram, U.J., Wong, L.S., Mo, K.H., Jumaat, M.Z., Ramesh, S., 2018. A review on microstructural study and compressive strength of geopolymer mortar, paste and concrete. Constr. Build. Mater. 186, 550–576.

Kriven, W.M., Leonelli, C., Provis, J.L., Boccaccini, A.R., Attwell, C., Ducman, V.S., Ferone, C., Rossignol, S., Luukkonen, T., van Deventer, J.S.J., Emiliano, J. V., Lombardi, J.E., 2024. Why geopolymers and alkali-activated materials are key components of a sustainable world: A perspective contribution. J. Am. Ceram. Soc. https://doi.org/10.1111/jace.19828

Kuenzel, C., Cisneros, J.F., Neville, T.P., Vandeperre, L.J., Simons, S.J.R., Bensted, J., Cheeseman, C.R., 2015. Encapsulation of Cs/Sr contaminated clinoptilolite in geopolymers produced from metakaolin. J. Nucl. Mater. 466, 94–99. https://doi.org/https://doi.org/10.1016/j.jnucmat.2015.07.034

Kim, B., Kang, J., Shin, Y., Yeo, T., Heo, J., Um, W., 2023. Effect of Si/Al molar ratio and curing temperatures on the immobilization of radioactive borate waste in metakaolin-based geopolymer waste form. J. Hazard. Mater. 458, 131884. https://doi.org/https://doi.org/10.1016/j.jhazmat.2023.131884

Jiang, C., Wang, A., Bao, X., Ni, T., Ling, J., 2020. A review on geopolymer in potential coating application: Materials, preparation and basic properties. J. Build. Eng. 32. https://doi.org/10.1016/j.jobe.2020.101734

Cong, P., Cheng, Y., 2021. Advances in geopolymer materials: A comprehensive review. J. Traffic Transp. Eng. (English Ed. 8, 283–314. https://doi.org/https://doi.org/10.1016/j.jtte.2021.03.004

Zhong, H., Zhang, M., 2022. 3D printing geopolymers: A review. Cem. Concr. Compos. 128. https://doi.org/10.1016/j.cemconcomp.2022.104455

Адилов Ж.К., Мирзаев А.Ж., Якубов С.И., Якубова Н.Д. Глауконит ва чанги кони масаласига доир. Горный вестник Узбекистана. № 1 (84) 2021. C. 43-47.