EKONOMETRIKADAGI INNOVATSION YECHIMLAR

Main Article Content

Abstract:

Maqolada ekonometrika fanini o‘qitishda zamonaviy axborot texnologiyalaridan foydalanish orqali dars samaradorligini oshirish masalalari chuqur tahlil qilinadi. Xususan, Matrixer 5.1 dasturi yordamida korrelyatsiya va regressiya tahlillarini amalga oshirish bo‘yicha amaliy misollar keltiriladi. Shuningdek, GeoGebra va MS Excel dasturlarining iqtisodiy masalalarni yechishda qo‘llanilishi batafsil ko‘rib chiqiladi. Maqolada zamonaviy dasturlarni o‘quv jarayonida qo‘llashning afzalliklari, talabalarning axborot madaniyatini oshirishdagi ahamiyati va o‘qituvchilarning kompyuter dasturlari bilan ishlash malakalarini rivojlantirish zarurligi yoritilgan.

Article Details

How to Cite:

Fattoyev , E. . (2024). EKONOMETRIKADAGI INNOVATSION YECHIMLAR . Eurasian Journal of Academic Research, 5(1 Special Issue), 26–29. Retrieved from https://in-academy.uz/index.php/ejar/article/view/44913

References:

Coulombe, P., Leroux, M., Stevanovic, D., & Surprenant, S. (2022). "How is Machine Learning Useful for Macroeconomic Forecasting?" Journal of Applied Econometrics, 37(5), 920-964. https://doi.org/10.1002/jae.2864

Banbura, M., Giannone, D., & Reichlin, L. (2010). "Large Bayesian Vector Auto Regressions." Journal of Applied Econometrics, 25(1), 71-92. https://doi.org/10.1002/jae.1137

Korobilis, D., & Pettenuzzo, D. (2020). "Machine Learning Econometrics: Bayesian Algorithms and Methods." arXiv preprint arXiv:2004.11486. https://arxiv.org/abs/2004.11486

Chan, F., & Mátyás, L. (Eds.). (2022). Econometrics with Machine Learning. Springer. https://doi.org/10.1007/978-3-031-15149-1

Kreinovich, V., Sriboonchitta, S., & Yamaka, W. (Eds.). (2024). Machine Learning for Econometrics and Related Topics. Springer. https://doi.org/10.1007/978-3-031-43601-7

Bauwens, L., & Lubrano, M. (1999). Bayesian Inference in Dynamic Econometric Models. Oxford University Press. https://doi.org/10.1093/0198773120.001.0001

Giannone, D., Lenza, M., & Primiceri, G. E. (2015). "Prior Selection for Vector Autoregressions." Review of Economics and Statistics, 97(2), 436-451. https://doi.org/10.1162/REST_a_00483

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.). Springer. https://doi.org/10.1007/978-0-387-84858-7