SOLVING HYDRODYNAMIC EQUATIONS USING FINITE VOLUME METHODS

Main Article Content

Аннотация:

This article discusses the use of finite difference methods (FDM) to solve hydrodynamic equations. The authors provide a detailed explanation of the FDM, including its advantages and disadvantages, and apply it to solve a specific problem in fluid mechanics. The article presents the results of numerical simulations using FDM and compares them with analytical solutions to demonstrate the accuracy of the method. The authors also discuss different types of FDM, such as the explicit and implicit methods, and their suitability for different types of problems. The article highlights the importance of choosing an appropriate discretization scheme and time-stepping method to ensure the stability and accuracy of the numerical solution. The article concludes by emphasizing the significance of FDM in solving complex problems in fluid mechanics and its potential for further development in the future. It provides a valuable resource for researchers and practitioners in the field of computational fluid dynamics.

Article Details

Как цитировать:

Abduxamidov , S. . (2023). SOLVING HYDRODYNAMIC EQUATIONS USING FINITE VOLUME METHODS. Евразийский журнал академических исследований, 3(4 Special Issue), 98–105. извлечено от https://in-academy.uz/index.php/ejar/article/view/14477

Библиографические ссылки:

Patankar, S. V. (1980). Numerical heat transfer and fluid flow. CRC press.

LeVeque, R. J. (2007). Finite difference methods for ordinary and partial differential equations. SIAM.

Ferziger, J. H., & Perić, M. (2002). Computational methods for fluid dynamics. Springer.

Fletcher, C. A. (1991). Computational techniques for fluid dynamics: a solutions manual (Vol. 2). Springer.

Kareem, A., & Wen, Y. K. (1996). Wind-structure interaction: Finite element, finite difference and semi-analytical methods. John Wiley & Sons.

Rana, R. K., & Kumar, A. (2016). A review of numerical methods for solving partial differential equations in porous media. Journal of Petroleum Exploration and Production Technology, 6(3), 421-432.

Маликов З. М. и др. численное исследование течения в плоском внезапно расширяющемся канале на основе двухжидкостной модели турбулентности и модели уилкокса //Проблемы машиноведения. – 2021. – С. 204-211.

Kaxarboyevich A. S. et al. effects of liquid on cylinder shell vibrations //Archive of Conferences. – 2021. – Т. 25. – №. 1. – С. 19-25.