ARTIFICIAL INTELLIGENCE IN CYBERSECURITY A DOUBLE-EDGED SWORD

Main Article Content

Аннотация:

Artificial intelligence (AI) is revolutionizing cybersecurity by enabling advanced threat detection, predictive analytics, and automated responses. However, its misuse for sophisticated cyberattacks has raised significant concerns. This study explores AI's dual role, presenting algorithms and models that power defensive and offensive AI applications. Mitigation strategies are discussed to balance these challenges.

Article Details

Как цитировать:

Jumaev , G. ., Primbetov , A. ., & Rajabova , M. . (2025). ARTIFICIAL INTELLIGENCE IN CYBERSECURITY A DOUBLE-EDGED SWORD. Евразийский журнал академических исследований, 4(12 Special Issue), 1035–1040. извлечено от https://in-academy.uz/index.php/ejar/article/view/45841

Библиографические ссылки:

Jumaev G., Normuminov A., Primbetov A. 2023 Vol. 6 No. 4 (2023): JOURNAL OF MULTIDISCIPLINARY BULLETIN SAFEGUARDING THE DIGITAL FRONTIER: EXPLORING MODERN CYBERSECURITY METHODS | JOURNAL OF MULTIDISCIPLINARY BULLETIN (sirpublishers.org) https://sirpublishers.org/index.php/jomb/article/view/156

Jumaev Giyosjon, ―Proceedings of the 11th International Conference on Applied Innovations in IT‖ XALQARO ILMIY JURNALI. ENHANCING ORGANIZATIONAL CYBERSECURITY THROUGH ARTIFICIAL INTELLIGENCE https://doi.org/10.5281/zenodo.10471793

Mamadjanov Doniyor, Jumaev Giyosjon, Normuminov Anvarjon INNOVATION IN THE MODERN EDUCATION SYSTEM: a collection scientific works of the International scientific conference (25th January, 2024) – Washington, USA: "CESS", 2024. Part 37 – 368 p. THE ROLE OF MACHINE LEARNING IN CREDIT RISK ASSESSMENT:EMPOWERING LENDING DECISIONS

Mamadjanov Doniyor, Jumaev Giyosjon, Normuminov Anvarjon INNOVATION IN THE MODERN EDUCATION SYSTEM: a collection scientific works of the International scientific conference (25th January, 2024) – Washington, USA: "CESS", 2024. Part 37 – 368 p. THE ROLE OF CLOUD COMPUTING IN ECONOMIC TRANSFORMATION

Buchanan, W. J. (2020). Advanced Cybersecurity Technologies. CRC Press.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

Papernot, N., McDaniel, P., Sinha, A., & Wellman, M. P. (2018). "SoK: Security and Privacy in Machine Learning." Proceedings of the IEEE Symposium on Security and Privacy.

Vinayakumar, R., Soman, K. P., & Poornachandran, P. (2019). "Applying Deep Learning for Network Traffic Analysis and Cybersecurity." Springer Handbook of Security and Privacy of AI.

Scarani, V., Bechmann-Pasquinucci, H., Cerf, N. J., Dusek, M., Lütkenhaus, N., & Peev, M. (2009). The security of practical quantum key distribution. Reviews of Modern Physics, 81(3), 1301–1350.

Cybersecurity and Infrastructure Security Agency (CISA). (2023). Artificial Intelligence and Cybersecurity: Opportunities and Risks. Retrieved from https://www.cisa.gov

Lo, H.-K., Curty, M., & Tamaki, K. (2014). Secure quantum key distribution. Nature Photonics, 8, 595–604.

Chen, T., Zhang, Z., & Liang, J. (2021). "AI-Powered Malware and Defensive Strategies." ACM Transactions on Cybersecurity.

Silver, D., Schrittwieser, J., & Hassabis, D. (2017). "Mastering the Game of Go with Deep Reinforcement Learning." Nature, 550, 354–359.

Kaspersky Lab. (2023). "Generative Adversarial Networks in Phishing Attacks." Retrieved from https://www.kaspersky.com

Shrestha, S., & Kim, S. H. (2020). "AI in Predictive Analytics for Cybersecurity." IEEE Access, 8, 123456–123469.

National Institute of Standards and Technology (NIST). (2023). AI Risk Management Framework for Cybersecurity. Retrieved from https://www.nist.gov

IBM Security. (2022). AI and Machine Learning in Threat Detection. Retrieved from https://www.ibm.com/security

Symantec Threat Intelligence. (2023). AI-Driven Cyber Threat Landscape Report. Retrieved from https://www.symantec.com

Microsoft Security. (2023). "Federated Learning: A Collaborative Approach to Cybersecurity." Retrieved from https://www.microsoft.com/security

Bennett, C. H., Brassard, G., & Mermin, N. D. (1992). Quantum cryptography without Bell’s theorem. Physical Review Letters, 68(5), 557–559.

Acín, A., Brunner, N., Gisin, N., et al. (2007). Device-independent security of quantum cryptography against collective attacks. Physical Review Letters, 98(23), 230501.

Scarani, V., Gisin, N., & Zbinden, H. (2004). Quantum key distribution protocols robust against photon number splitting attacks for weak laser pulse implementations. Physical Review Letters, 92(5), 057901.

Наиболее читаемые статьи этого автора (авторов)

1 2 > >>