APPLICATION OF LOCAL INTERPOLATION CUBIC SPLINE MODEL BUILT IN UNEQUAL INTERVALS

Main Article Content

Аннотация:

The processes of interpolation of biomedical signals obtained as a result of experimental studies are carried out using the local cubic spline model proposed in this work. The obtained results show that cubic spline models give good results in digital signal processing, which ensures that specialists make the right decision (diagnosis) as a result of digital signal processing in a certain field (in the field of medicine). The initial values of the ECG signal were digitally processed for the study. The obtained results are graphically displayed and the error results are evaluated [1,2]. The closeness of the reconstructed signal values to the original signal amplitudes and the very low error ensure the model's performance. In addition, accuracy is very important in the field of medicine. In medicine, accuracy plays an important role in processes such as determining the current condition of a patient brought to the hospital in critical condition, determining the type of disease, and determining the degree of the disease [3,5]. Increasing the degree of convergence of the models considered in this work does not depend on increasing the order of the system of equations.

Article Details

Как цитировать:

Qobilov , S. ., & Muminov , E. . (2025). APPLICATION OF LOCAL INTERPOLATION CUBIC SPLINE MODEL BUILT IN UNEQUAL INTERVALS. Наука и технология в современном мире, 4(13), 49–51. извлечено от https://in-academy.uz/index.php/zdift/article/view/53581

Библиографические ссылки:

Bakhromov S. A., Eshkuvatov Z. K. Error estimates for one local interpolation cubic spline with the maximum approximation order of ????(ℎ3 ) for ????1[????, ????] classes. AIP Conference Proceedings 2484 030009 (2023). doi: http://dx.doi.org/10.1063/5.0110417.

Bakhromov S.A. Digital Processing of Signals Ryabenky Cubic Spline Model. AIP Conference Proceedings 2781 020015 (2023). doi: http://dx.doi.org/10.1063/5.0145980.

Bahramov S.A., Jovliev S. Bicubic Splines in Problems of Modeling of Multidimensional Signal. “International journal of “the korea institute of maritime information & communication sciences”. Vol.9, No.4, August 2011, р.420-423.

Исраилов М.И., Эшдавлатов Б. Уточнение остаточного члена одного интерполяционного сплайна. // Вопр. вычис. и прик. математики, - Ташкент: РИСО АН Узбекистана, 1986, вып. 80, С. 10-26.

Рябенький В.С., Филлипов А.Ф. Об устойчивости разностных уравнений. - М.: Гостехиздат. 1956, - 171 с.

Соболев С.Л. Введение в теорию кубатурных формул. -М.: Наука. 1974. 808 с.

Yusupov I, Nurmurodov J, Ibragimov S, Gofurjonov M, Qobilov S. “Calculation of Spectral Coefficients of Signals on the Basis of Haar by the Method of Machine Learning”, 14th International Conference, IHCI 2022, Tashkent, Uzbekistan, October 20–22, 2022, pp 547–558. https://link.springer.com/conference/ihci

Zavyalov Yu.S., Kvasov B.I., Miroshnichenko V.L. 2008. Methods of spline functions. M.: Nauka, 1980, - 352 p.