OVOZDA BOʻLAYOTGAN OʻZGARISHLAR ASOSIDA MA’LUM KASALLIKLARNI ANIQLASH UCHUN MOBIL ILOVA ISHLAB CHIQISH.
Main Article Content
Аннотация:
Hozirgi kunda mobil qurilmalardan tibbiyotda foydalanish sezilarli darajada oshmoqda. Bunday qurilmalar klinik yozuvlar va multimedia ma’lumotlarini saqlash, qayta ishlash va almashish imkonini beradi hamda foydalanuvchilarga sog‘liqlarini istalgan joydan monitoring qilish va boshqarish imkoniyatini yaratadi. Taklif etilayotgan mobil ilova disfoniya va boshqa ovoz bilan bog‘liq patologiyalarni aniqlashga qaratilgan bo‘lib, foydalanuvchilarning hayot sifatiga salbiy ta’sir ko‘rsatadigan ovoz buzilishlarini erta aniqlash imkonini beradi. Ilovaning ishlashi uchun Toshkent tibbiyot akademiyasi ma’lumotlar bazasi, sog‘lom va patologik ovoz namunalaridan iborat ma’lumotlar to‘plami hamda zamonaviy dasturlash tillari qo‘llanildi.
Article Details
Как цитировать:
Библиографические ссылки:
Al-Dhief F.T., Baki M.M., Latiff N.M.A., Malik N.N.N.A., Salim N.S., Albader M.A.A., Mahyuddin N.M., Mohammed M.A. Voice pathology detection and classification by adopting online sequential extreme learning machine IEEE Access, 9 (2021), pp. 77293-77306.
B. Woldert-Jokisz, ‘‘Saarbruecken voice database,’’ Inst. Phonetics, Univ. Saarland, Saarbrücken, Germany, Tech. Rep., 2007.
S.-H. Fang, Y. Tsao, M.-J. Hsiao, J.-Y. Chen, Y.-H. Lai, F.-C. Lin, and C.-T. Wang, ‘‘Detection of pathological voice using cepstrum vectors: A deep learning approach,’’ J. Voice, vol. 33, no. 5, pp. 634–641, Sep. 2019.
Al Mojaly M., Muhammad G., Alsulaiman M. Detection and classification of voice pathology using feature selection 2014 IEEE/ACS 11th International Conference on Computer Systems and Applications, AICCSA, IEEE (2014), pp. 571-577.
Alhussein M., Muhammad G. Voice pathology detection using deep learning on mobile healthcare framework IEEE Access, 6 (2018), pp. 41034-41041.
