AI-BASED NETWORK MONITORING AND FAULT DETECTION IN MODERN COMPUTER NETWORKS
##plugins.themes.bootstrap3.article.main##
Abstrak:
The increasing complexity and scale of modern computer networks have made traditional monitoring and fault detection mechanisms insufficient for ensuring reliable network operation. Conventional rule-based and threshold-driven approaches often fail to detect hidden anomalies and respond promptly to dynamic network conditions. This paper investigates the application of artificial intelligence techniques for network monitoring and fault detection. The study analyzes how machine learning and intelligent data analysis enable proactive detection of abnormal behavior, early identification of network failures, and automated performance optimization. The findings demonstrate that AI-based monitoring systems significantly improve detection accuracy, reduce response time, and enhance overall network reliability. The paper highlights the importance of intelligent and adaptive monitoring frameworks for managing next-generation computer networks.
##plugins.themes.bootstrap3.article.details##
##submission.howToCite##:
##submission.citations##:
Tanenbaum, A. S., Wetherall, D. J. Computer Networks. 5th ed., Pearson Education, 2011.
Kurose, J. F., Ross, K. W. Computer Networking: A Top-Down Approach. 8th ed., Pearson, 2021.
Shoyqulov, Sh. Q. On the study of optical communication systems using simulators. Eurasian journal of mathematical theory and computer sciences, Т. 5, Выпуск 11. 20-28 p. Nov. 2025. https://doi.org/10.5281/zenodo.17640489
Shoyqulov, Sh. Q. AI-enhanced Web scraping for data-driven analysis. Central Asian Journal of Multidisciplinary Research and Management Studies (CAJMRMS), Vol 2, Issue 11. 20-27 p. Nov. 2025. ISSN:3030-3540. https://doi.org/10.5281/zenodo.17529443
Shoyqulov, Sh. Q. Artificial intelligence for automated seo enhancement. Yangi O'zbekiston ilmiy tadqiqotlar jurnali (YOITJ), 2-jild, 11-son. IF=8.5. 31-37 p. Nov. 2025. ISSN:3030-3559. https://doi.org/10.5281/zenodo.17522170
Shoyqulov, Sh. Q. Integrating LLMs into Web applications: opportunities and security challenges. Eurasian journal of mathematical theory and computer sciences (Т. 5, Выпуск 6, сс. 54–60). https://doi.org/10.5281/zenodo.15755908
Shoyqulov, Sh. Q. AI-driven UX optimization for Web applications. Eurasian journal of mathematical theory and computer sciences (Т. 5, Выпуск 6, сс. 46–53). https://doi.org/10.5281/zenodo.15755881
Shoyqulov, Sh. Q. Analysis and optimization of graphics programming in C# using Unity. «Science and innovation» xalqaro ilmiy jurnali, Volume 3 Issue 10, 69-75 p. https://doi.org/10.5281/zenodo.14000841
Shoyqulov, Sh. Q. Main Internet threats and ways to protect against them. Евразийский журнал академических исследований, 4(10), 140-146 p. извлечено от https://in-academy.uz/index.php/ejar/article/view/38709. DOI: https://doi.org/10.5281/zenodo.13991390
Shoyqulov, Sh. Q. Using Python programming in computer graphics. «Science and innovation» xalqaro ilmiy jurnali, Volume 3 Issue 10, 18-24 p. https://doi.org/10.5281/zenodo.13926022
Shoyqulov, Sh. Q. Data visualization in Python. EURASIAN JOURNAL OF MATHEMATICAL THEORY AND COMPUTER SCIENCES (Т. 4, Выпуск 10, сс. 15–22). Zenodo. https://doi.org/10.5281/zenodo.13892777
Shoyqulov, Sh. Q. Graphical programming of 2D applications in C# . EURASIAN JOURNAL OF MATHEMATICAL THEORY AND COMPUTER SCIENCES (Т. 4, Выпуск 10, сс. 7–14). Zenodo. https://doi.org/10.5281/zenodo.13892766
Shoyqulov, Sh. Q. Multimedia possibilities of Web-technologies. Eurasian journal of mathematical, theory and computer sciences, UIF = 8.3 , SJIF = 5.916, ISSN 2181-2861, Vol. 3 Issue 3, Mart 2023, p. 11-15, https://www.doi.org/10.37547/ejmtcs-v03-i03-p1-02
