MASHINALI O‘QITISH ALGORITMLARI ASOSIDA TIBBIY TASVIRLARNI ANIQLASH USULLARI

Main Article Content

Abstract:

Ushbu maqola mashinali o‘qitish algoritmlari asosida tibbiy tasvirlarni aniqlash usullariga bag‘ishlangan. Bundan tashqari maqolada tibbiy tasvirlar, tasvirlarni mashinali o‘qitish algoritmlarining segmentatsiya, klassifikatsiya va chuqur o‘qitish usullari ko‘rib chiqilgan. Shuningdek, nazoratli o‘qitish usuli asosida zararlangan hududni aniqlash muammosi ko‘rib chiqilgan.

Article Details

How to Cite:

Rajabova , M. ., & Jumaev , G. . (2025). MASHINALI O‘QITISH ALGORITMLARI ASOSIDA TIBBIY TASVIRLARNI ANIQLASH USULLARI . Eurasian Journal of Academic Research, 4(12 Special Issue), 116–120. Retrieved from https://in-academy.uz/index.php/ejar/article/view/44936

References:

Sadullaeva Sh.A., Aripova Z.D, Rajabova M.R., “Ayollarda uchraydigan mioma kasalligini segmentatsiyalash orqali aniqlash” “Zamonaviy Axborot, Kommunikatsiya Texnologiyalari Va At-Ta’lim Tatbiqi Muammolari” Mavzusidagi Respublika Ilmiy-Amaliy Anjumani, Samarqand,pp. 88–90, 2022.

Analysis of Detection and segmentation of Uterine fibroids between uzbek women Sadullaeva Sh. A., Sadullaeva U. A., Artikova M.A., Aripova Z.D. Radjabova M.R. NeuroQuantology 20 (10), 83-90

AI vs Machine Learning vs Deep Learning|Edureka. Available online: https://www.edureka.co/blog/ai-vs-machine-learning-vs-deep-learning/ (accessed on 11 August 2022).

Andhika S. Pratama. "Image Labeling — Take a Part in Machine Learning." Data Folks Indonesia. Medium, 2020.

Shrestha, A.; Mahmood, A. Review of deep learning algorithms and architectures. IEEE Access 2019, 7, 53040–53065. [Google Scholar] [CrossRef]

TensorFlow-TensorRT Documentation. Available online: https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/ index.html (accessed on 24 February 2022).

Most read articles by the same author(s)