ANALITIK GEOMETRIYADA TO'G'RI CHIZIQNING TEKISLIKKA PERPENDIKULYARLIGI TEKSHIRISHNING YANGI KOMPOZIT FORMULASI

Main Article Content

Аннотация:

Ushbu maqolada analitik geometriyada to‘g‘ri chiziqning tekislikka perpendikulyarligini tekshirish uchun yangi kompozit formula taklif etiladi. Yangi yondashuv normallashtirilgan yo‘nalish vektori, gradient vektori va determinantli mezonni birlashtiradi. Natijada chiziq–tekislik perpendikulyarligi faqat skalyar ko‘paytma emas, balki aralash ko‘paytma va gradientning yo‘nalish bo‘yicha o‘zgarish tezligi yordamida aniqlanishi mumkinligi ko‘rsatiladi. Teorema asosida chiziq va tekislikning o‘zaro joylashuvi uchun yangi klassifikatsiya mezonlari ishlab chiqiladi. Ushbu formula 3D grafikasi, mexanika, fizik modellashtirish va kosmik navigatsiyada qo‘llanilishi mumkin.

Article Details

Как цитировать:

Qodirova , R. ., & Maxmudova , D. . (2025). ANALITIK GEOMETRIYADA TO’G’RI CHIZIQNING TEKISLIKKA PERPENDIKULYARLIGI TEKSHIRISHNING YANGI KOMPOZIT FORMULASI. Наука и инновация, 3(51), 44–47. извлечено от https://in-academy.uz/index.php/si/article/view/67174

Библиографические ссылки:

Abduraxmonova, R., & Mahmudova, D. (2025). Nuqtadan to'g'ri chiziqqacha bo'lgan masofa. Ikki to'g'ri chiziq orasidagi burchak. В theoretical aspects in the formation of pedagogical sciences (Т. 4, Выпуск 7, сс. 74–78). Zenodo. https://doi.org/10.5281/zenodo.15186643

Abdulhayeva, G., & Mahmudova, D. (2025). Tekislikda to'g'ri chiziq tenglamalari va ularni amaliyotga tadbiqi. В theoretical aspects in the formation of pedagogical sciences (Т. 4, Выпуск 7, сс. 35–40).

Karimberdiyeva , D. ., & Mahmudova , D. . (2025). Tekislikdagi perspektiv-affin moslikning o’ziga xos xususiyatlari. Развитие педагогических технологий в современных науках, 4(3), 114–117.

Abdiqayumov , A., & Maxmudova , D. (2025). CENTRAL AND PARALLEL PROJECTIONS AND THEIR PROPERTIES. Теоретические аспекты становления педагогических наук, 4(8), 177–184. извлечено от https://inlibrary.uz/index.php/tafps/article/view/83478

Dilnoza, M. Use of the Acmelological Approach to Teaching Mathematics. International Journal of Innovative Analyses and Emerging Technology. c-ISSN, 2792-4025.

Makhmudova, D. K. (2020). Significance of acmeological approach in improving the cognitive competence of the future teachers. Scientific Bulletin of Namangan State University, 2(4), 426-433.