THE IMPACT OF OBESITY ON THE CARDIOVASCULAR SYSTEM
Main Article Content
Аннотация:
The prevalence of obesity is escalating globally, posing a significant health challenge. Its impact on cardiovascular health stems from both the direct effects of obesity and its association with various comorbidities such as hypertension, diabetes, insulin resistance, and sleep apnea syndrome. Atherosclerosis and coronary artery disease are notably exacerbated by obesity. Structural and functional alterations of the heart induced by obesity contribute to the development of heart failure, while the modified myocardial structure heightens susceptibility to atrial fibrillation and sudden cardiac death. Intriguingly, obesity exhibits a paradoxical protective effect on the clinical outcomes of underlying cardiovascular diseases, termed the "obesity paradox." Advancements in cardiac imaging techniques enable the early identification of cardiac structural and functional changes in obese individuals. This review aims to elucidate the intricate relationship between obesity and cardiovascular diseases, delineating the underlying mechanisms. Moreover, it highlights emerging cardiac diagnostic methods that facilitate the timely detection and management of subclinical conditions, thereby averting cardiovascular events.
Article Details
Как цитировать:
Библиографические ссылки:
Zamora E., Lupón J., Enjuanes C., et al. No benefit from the obesity paradox for diabetic patients with heart failure. European Journal of Heart Failure. 2016;18(7):851–858. doi: 10.1002/ejhf.576. [PubMed] [CrossRef] [Google Scholar]
Piepoli M. F. Obesity in heart failure: is it time to rethink the paradox? European Journal of Heart Failure. 2017;19(12):p. 1736. doi: 10.1002/ejhf.819. [PubMed] [CrossRef] [Google Scholar]
Cuspidi C., Rescaldani M., Sala C., Grassi G. Left-ventricular hypertrophy and obesity: a systematic review and meta-analysis of echocardiographic studies. Journal of Hypertension. 2014;32(1):16–25. doi: 10.1097/HJH.0b013e328364fb58. [PubMed] [CrossRef] [Google Scholar]
Rocha I. E. G. M., Victor E. G., Braga M. C., Silva O. B. e., Becker M. d. M. C. Echocardiography evaluation for asymptomatic patients with severe obesity. Arquivos Brasileiros de Cardiologia. 2007;88(1):52–58. doi: 10.1590/S0066-782X2007000100009. [PubMed] [CrossRef] [Google Scholar]
Nagueh S. F., Appleton C. P., Gillebert T. C., et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Journal of the American Society of Echocardiography. 2009;22(2):107–133. doi: 10.1016/j.echo.2008.11.023. [PubMed] [CrossRef] [Google Scholar]
Di Bello V., Fabiani I., Conte L., et al. New echocardiographic techniques in the evaluation of left ventricular function in obesity. Obesity (Silver Spring) 2013;21(5):881–892. doi: 10.1002/oby.20071. [PubMed] [CrossRef] [Google Scholar]
Murat Tumuklu M., Etikan I., Kisacik B., Kayikcioglu M. Effect of obesity on left ventricular structure and myocardial systolic function: assessment by tissue Doppler imaging and strain/strain rate imaging. Echocardiography. 2007;24(8):802–809. doi: 10.1111/j.1540-8175.2007.00484.x. [PubMed] [CrossRef] [Google Scholar]
Holland M. R., Wallace K. D., Miller J. G. Potential relationships among myocardial stiffness, the measured level of myocardial backscatter (“image brightness”), and the magnitude of the systematic variation of backscatter (cyclic variation) over the heart cycle. Journal of the American Society of Echocardiography. 2004;17(11):1131–1137. doi: 10.1016/j.echo.2004.06.004. [PubMed] [CrossRef] [Google Scholar]
Wickline S. A., Thomas L. J., 3rd, Miller J. G., Sobel B. E., Perez J. E. A relationship between ultrasonic integrated backscatter and myocardial contractile function. Journal of Clinical Investigation. 1985;76(6):2151–2160. doi: 10.1172/JCI112221. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Edvardsen T., Gerber B. L., Garot J́̂., Bluemke D. A., Lima J˜. A. C., Smiseth O. A. Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans: validation against three-dimensional tagged magnetic resonance imaging. Circulation. 2002;106(1):50–56. doi: 10.1161/01.CIR.0000019907.77526.75. [PubMed] [CrossRef] [Google Scholar]
Lang R. M., Badano L. P., Tsang W., et al. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. Journal of the American Society of Echocardiography. 2012;25(1):3–46. doi: 10.1016/j.echo.2011.11.010. [PubMed] [CrossRef] [Google Scholar]
el-Gamal A., Gallagher D., Nawras A., et al. Effects of obesity on QT, RR, and QTc intervals. The American Journal of Cardiology. 1995;75(14):956–959. doi: 10.1016/S0002-9149(99)80700-0. [PubMed] [CrossRef] [Google Scholar]
Mshui M. E., Saikawa T., Ito K., Hara M., Sakata T. QT interval and QT dispersion before and after diet therapy in patients with simple obesity. Proceedings of the Society for Experimental Biology and Medicine. 1999;220(3):133–138. doi: 10.3181/00379727-220-44355. [PubMed] [CrossRef] [Google Scholar]
Lubinski A., Kornacewicz-Jach Z., Wnuk-Wojnar A. M., et al. The terminal portion of the T wave: a new electrocardiographic marker of risk of ventricular arrhythmias. Pacing and Clinical Electrophysiology. 2000;23(11P2):1957–1959. doi: 10.1111/j.1540-8159.2000.tb07061.x. [PubMed] [CrossRef] [Google Scholar]
Shimizu M., Ino H., Okeie K., et al. T-peak to T-end interval may be a better predictor of high-risk patients with hypertrophic cardiomyopathy associated with a cardiac troponin I mutation than QT dispersion. Clinical Cardiology. 2002;25(7):335–339. doi: 10.1002/clc.4950250706. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Yamaguchi M., Shimizu M., Ino H., et al. T wave peak-to-end interval and QT dispersion in acquired long QT syndrome: a new index for arrhythmogenicity. Clinical Science. 2003;105(6):671–676. doi: 10.1042/CS20030010. [PubMed] [CrossRef] [Google Scholar]