TEKISLIKLAR ORASIDAGI O'ZARO MASOFANI MINIMALLASHTIRISH MASALASINING VEKTORLI ISBOTI
Main Article Content
Abstract:
Ushbu maqolada fazoda berilgan ikki tekislik orasidagi masofani minimallashtirish masalasi vektorli yondashuv asosida tadqiq qilinadi. Agar tekisliklar parallel bo‘lsa, ular orasidagi eng kichik masofa normal vektor yo‘nalishida erishilishi vektorlar ayirmasi va skalyar ko‘paytma yordamida isbotlanadi. Agar tekisliklar kesishuvchi bo‘lsa, u holda ular orasidagi masofa nolga teng ekanligi vektorli isbot orqali ko‘rsatib beriladi. Natijada, tekisliklar orasidagi minimal masofa yagona vektorli model orqali ifodalanadi va geometrik invariant sifatida asoslanadi.
Article Details
How to Cite:
References:
Bronshtein I.N., Semendyayev K.A. Mathematics Handbook for Scientists and Engineers. — Berlin: Springer, 2016
Anton H., Rorres C. Elementary Linear Algebra with Applications. -New York: John Wiley & Sons, 2014.
Dilnoza, M. Use of the Acmelological Approach to Teaching Mathematics. International Journal of Innovative Analyses and Emerging Technology. c-ISSN, 2792-4025.
Abduraxmonova, R., & Mahmudova, D. (2025). Nuqtadan to'g'ri chiziqqacha bo'lgan masofa. Ikki to'g'ri chiziq orasidagi burchak. В theoretical aspects in the formation of pedagogical sciences (Т. 4, Выпуск 7, сс. 74–78).
Abdulhayeva, G., & Mahmudova, D. (2025). Tekislikda to'g'ri chiziq tenglamalari va ularni amaliyotga tadbiqi. В theoretical aspects in the formation of pedagogical sciences (Т. 4, Выпуск 7, сс. 35–40).
Karimberdiyeva , D. ., & Mahmudova , D. . (2025). Tekislikdagi perspektiv-affin moslikning o’ziga xos xususiyatlari. Развитие педагогических технологий в современных науках, 4(3), 114–117.
Ismoilova D., & Mahmudova, D. (2025). Ko‘p o‘lchovli yevklid fazosi: o‘qitish texnologiyasi asosida yondashuv. Innov. Conf. Published online April 17, 2025:1-7. Accessed April 18, 2025.
Mamatkadirova Zebo Tohirjon qizi, & Dilnoza Xaytmirzayevna Maxmudova. (2025). Constructing an ellipse using conjugate diameters and its applications. International Scientific and Current Research Conferences, 1(01), 48–55
Maxmudova , D. ., & Mahmudova , D. . (2025). Ikkinchi tartibli chiziqning diametri va qo‘shma diametrlar. Современные подходы и новые исследования в современной науке, 4(8), 22–28. извлечено от https://inlibrary.uz/index.php/canrms/article/view/98778
Abdujalilova, K. ., & Mahmudova , D. Chiziqli bog’liqlik va chiziqli erkli vektorlar va ularning xossalari. (2025). Multidisciplinary Journal of Science and Technology, 5(5), 203-207.
https://www.mjstjournal.com/index.php/mjst/article/view/3396
Abdiqayumov , A., & Maxmudova , D. (2025). Central and parallel projections and their properties. Теоретические аспекты становления педагогических наук, 4(8), 177–184.
