KUCHAYTIRISH USULLARI

Main Article Content

Аннотация:

Ushbu tezis sun’iy intellekt va mashinaviy o‘qitishda keng qo‘llaniladigan kuchaytirish usullari ning nazariy asoslari, turlari va ularning amaliy qo‘llanilishi haqida ma’lumot beradi. Kuchaytirish usullari bir nechta mustaqil modellarni birlashtirish orqali yagona, ancha aniq va barqaror prognoz beruvchi model yaratishga asoslanadi. Bu yondashuv alohida modelning kamchiliklarini bartaraf etib, umumiy natijaning aniqligini oshirishga xizmat qiladi. Ishda ansambllarning asosiy turlari - bagging, boosting, stacking, shuningdek Random Forest, AdaBoost, Gradient Boosting kabi zamonaviy algoritmlar ko‘rib chiqiladi. Har bir usulning afzalliklari, cheklovlari va qaysi vazifalarda samarali ekani amaliy misollar orqali yoritiladi. Kuchaytirish usullarining tasniflashi va ishlash mexanizmi o‘rganilar ekan, ular sun’iy intellektning turli sohalarida - klassifikatsiya, regressiya, anomaliyalarni aniqlash va bashoratlash kabi jarayonlarda eng yuqori natijalarni berishi ta’kidlanadi. Ushbu ish kuchaytirish usullarining mohiyatini, ularning ahamiyatini va real muammolarni hal etishdagi rolini tushuntirishga qaratilgan.

Article Details

Как цитировать:

Xolmatova , D. (2025). KUCHAYTIRISH USULLARI. Молодые ученые, 3(48), 77–81. извлечено от https://in-academy.uz/index.php/yo/article/view/67122

Библиографические ссылки:

Breiman, L. Random Forests. Machine Learning, 2001.

Freund, Y., Schapire, R. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. Journal of Computer and System Sciences, 1997.

Friedman, J. H. Greedy Function Approximation: A Gradient Boosting Machine. Annals of Statistics, 2001.

Bishop, C. M. Pattern Recognition and Machine Learning. Springer, 2006.

Hastie, T., Tibshirani, R., Friedman, J. The Elements of Statistical Learning. Springer, 2009.

Goodfellow, I., Bengio, Y., Courville, A. Deep Learning. MIT Press, 2016.

Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow. O’Reilly Media, 2023.

Russell, S., Norvig, P. Artificial Intelligence: A Modern Approach.

Scikit-Learn Documentation – Ensemble Methods. https://scikit-learn.org/stable/modules/ensemble.html

Kaggle Learn: Ensemble Models. https://www.kaggle.com/learn/ensemble-models

Medium – “A Complete Guide to Ensemble Learning”. https://medium.com

Google Machine Learning Crash Course https://developers.google.com/machine-learning

Analytics Vidhya—Ensemble Techniques. https://www.analyticsvidhya.com

MIT OpenCourseWare – Machine Learning. https://ocw.mit.edu

DeepLearning.ai Blog- https://www.deeplearning.ai