TORLAR VA SONLI FARQLAR USULI: MATEMATIK MODELLASHTIRISHNING ASOSIY VOSITALARI
Main Article Content
Abstract:
Ushbu maqolada differentsial operatorlarning sonli farqlarga asoslangan yaqinlashishlarining nazariy va amaliy jihatlari o‘rganilgan. Tor usullarining matematik asoslari, diskretlashtirish jarayoni, turli tartibli sonli farq yaqinlashish sxemalari va ularning xatolari tahlil qilingan. Birinchi, ikkinchi va to‘rtinchi tartibli hosilalar uchun optimal yaqinlashish formulalari keltirilgan, ularning yaqinlashish tartiblari va xatolari tahli qilingan. Issiqlik o‘tkazuvchanlik tenglamasi uchun turli sxemalar (anig, noanig va og’irlikli sxemalar) taqdim etilgan. Maqolada yaqinlashish xatosini kamaytirish usullari, barqarorlik muammolari va zamonaviy rivojlanishlar ham muhokama qilingan. Olingan natijalar hisoblash matematikasi, sonli usullar va matematik fizika sohalarida amaliy qo‘llanilishi mumkin.
Article Details
How to Cite:
References:
Samarskiy A.A. “Teoriya raznostnyx sxem”-Moscow, Nauka, 1977
Richtmyer R.D., Morton K.W. “Difference Methods for Initial-Value Problems”-Wiley, 1967
LeVeque R.J. “Finite Difference Methods for Ordinary and Partial Differential Equations”-SIAM, 2007
Tichonov A.N., Samarskiy A.A. “Uravneniya matematicheskoy fiziki”-Moscow, Nauka, 1972
Strikwerda J.C. “Finite Difference Schemes and Partial Differential Equations”-SIAM, 2004
Thomas J.W. “Numerical Partial Differential Equations: Finite Difference Methods”-Springer, 1995
