TORLAR VA SONLI FARQLAR USULI: MATEMATIK MODELLASHTIRISHNING ASOSIY VOSITALARI

Main Article Content

Abstract:

Ushbu maqolada differentsial operatorlarning sonli farqlarga asoslangan yaqinlashishlarining nazariy va amaliy jihatlari o‘rganilgan. Tor usullarining matematik asoslari, diskretlashtirish jarayoni, turli tartibli sonli farq yaqinlashish sxemalari va ularning xatolari tahlil qilingan. Birinchi, ikkinchi va to‘rtinchi tartibli hosilalar uchun optimal yaqinlashish formulalari keltirilgan, ularning yaqinlashish tartiblari va xatolari tahli qilingan. Issiqlik o‘tkazuvchanlik tenglamasi uchun turli sxemalar (anig, noanig va og’irlikli sxemalar) taqdim etilgan. Maqolada yaqinlashish xatosini kamaytirish usullari, barqarorlik muammolari va zamonaviy rivojlanishlar ham muhokama qilingan. Olingan natijalar hisoblash matematikasi, sonli usullar va matematik fizika sohalarida amaliy qo‘llanilishi mumkin.

Article Details

How to Cite:

Azimjonova , S. . (2025). TORLAR VA SONLI FARQLAR USULI: MATEMATIK MODELLASHTIRISHNING ASOSIY VOSITALARI. Young Scientists, 3(53), 80–84. Retrieved from https://in-academy.uz/index.php/yo/article/view/68996

References:

Samarskiy A.A. “Teoriya raznostnyx sxem”-Moscow, Nauka, 1977

Richtmyer R.D., Morton K.W. “Difference Methods for Initial-Value Problems”-Wiley, 1967

LeVeque R.J. “Finite Difference Methods for Ordinary and Partial Differential Equations”-SIAM, 2007

Tichonov A.N., Samarskiy A.A. “Uravneniya matematicheskoy fiziki”-Moscow, Nauka, 1972

Strikwerda J.C. “Finite Difference Schemes and Partial Differential Equations”-SIAM, 2004

Thomas J.W. “Numerical Partial Differential Equations: Finite Difference Methods”-Springer, 1995