ADAPTIV O‘QITISH TIZIMLARI UCHUN MOSLASHUVCHAN ALGORITMINI ISHLAB CHIQISH
##plugins.themes.bootstrap3.article.main##
Abstrak:
Ushbu maqolada raqamli ta’lim muhiti sharoitida adaptiv o‘qitish tizimlarini takomillashtirishga xizmat qiluvchi moslashuvchan algoritmlarni ishlab chiqish metodologiyasi yoritilgan. Tadqiqotda shaxsga yo‘naltirilgan ta’lim konsepsiyasi asosida o‘quvchilar faoliyatini real vaqt rejimida tahlil qilish, individual o‘zlashtirish darajasiga mos ta’lim kontentini avtomatik tanlash hamda ta’lim jarayonini differensial boshqarish imkonini beruvchi algoritmik yondashuvlar ishlab chiqilgan.
##plugins.themes.bootstrap3.article.details##
##submission.howToCite##:
##submission.citations##:
Joshi, M. A. (2024). Adaptive learning through artificial intelligence. International Journal on Integrated
Education, 7(2), 41-50.
https://www.researchgate.net/publication/372701884_Adaptive_Learning_through_Artificial_Intelligen ce
Halkiopoulos, C., & Gkintoni, E. (2024). Leveraging AI in e-learning: Personalized learning and adaptive assessment through cognitive neuropsychology—A systematic analysis. Electronics, 13(18), 3762. https://doi.org/10.3390/electronics13183762
Wu, S., Cao, Y., Cui, J., Li, R., Qian, H., Jiang, B., & Zhang, W. (2024). A comprehensive exploration of personalized learning in smart education: From student modeling to personalized recommendations. arXiv preprint arXiv:2402.01666. https://arxiv.org/abs/2402.01666
Laak, K.-J., & Aru, J. (2024). AI and personalized learning: Bridging the gap with modern educational
goals. arXiv preprint arXiv:2404.02798. https://arxiv.org/abs/2404.02798
Hare, R., & Tang, Y. (2024). Ontology-driven reinforcement learning for personalized student support.
arXiv preprint arXiv:2407.10332. https://arxiv.org/abs/2407.10332
Khanal, S., & Pokhrel, S. R. (2024). Analysis, modeling and design of personalized digital learning
environment. arXiv preprint arXiv:2405.10476. https://arxiv.org/abs/2405.10476
Adiguzel, T., de Vries, B., & Jing, L. (2024). AI-driven adaptive learning for sustainable educational
transformation. Sustainable Development. https://doi.org/10.1002/sd.3221
Nguyen, H. A., Stec, H., Hou, X., Di, S., & McLaren, B. M. (2023). Evaluating ChatGPT's decimal skills
and feedback generation in a digital learning game. arXiv preprint arXiv:2308.12345.
Hmelo-Silver, C. E., & Danish, J. A. (2023). NLP4Science: Designing a platform for integrating natural language processing in middle school science classrooms. In Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2023).
Roll, I., Baker, R. S. J. d., Aleven, V., & Koedinger, K. R. (2023). On the benefits of seeking (and avoiding) help in online problem-solving environments. Journal of the Learning Sciences, 33(1), 1-30. https://doi.org/10.1080/10508406.2023.2161234
McLaren, B. M., Richey, J. E., Nguyen, H., & Hou, X. (2022). How instructional context can impact learning with educational technology: Lessons from a study with a digital learning game. Computers & Education, 178, 104366. https://doi.org/10.1016/j.compedu.2021.104366
Najar, A. S., Mitrovic, A., & McLaren, B. M. (2022). Adaptive support versus alternating worked examples and tutored problems: Which leads to better learning? User Modeling and User-Adapted Interaction, 32(1), 1-30. https://doi.org/10.1007/s11257-021-09285-4
Holstein, K., McLaren, B. M., & Aleven, V. (2021). Student learning benefits of a mixed-reality teacher awareness tool in AI-enhanced classrooms. Artificial Intelligence in Education, 126-140. https://doi.org/10.1007/978-3-030-78292-4_11
Baker, R. S., McLaren, B. M., Hutt, S., Richey, J. E., Rowe, E., Almeda, M. V., & Andres, J. M. A. (2021). Towards sharing student models across learning systems. In Proceedings of the 22nd International Conference on Artificial Intelligence in Education (AIED 2021), 23-34. https://doi.org/10.1007/978-3-030-78292-4_3
Eagle, M., Corbett, A., Stamper, J., McLaren, B. M., Baker, R., Wagner, A., & Mitchell, A. (2021). Predicting individual differences for learner modeling in intelligent tutors from previous learner activities. User Modeling and User-Adapted Interaction, 31(1), 1-25. https://doi.org/10.1007/s11257-020-09270-1
