CREDIT CARD FRAUD DETECTION USING MACHINE LEARNING TECHNIQUES
Main Article Content
Аннотация:
Credit card fraud represents a major issue, resulting in billions of dollars lost annually. Machine learning offers a solution for detecting such fraud by identifying patterns that indicate fraudulent transactions. Credit card fraud encompasses both the physical loss of a credit card and the theft of sensitive credit card information. Various machine learning algorithms can be employed for detection purposes. This project aims to develop a machine learning model specifically designed to identify credit card fraud. The model will be trained on a dataset of historical credit card transactions and evaluated using a separate holdout dataset of unseen transactions.
Article Details
Как цитировать:
Библиографические ссылки:
Primbetov, A. (2024). Automatic Red Eye Remover using OpenCV. Modern Science and Research, 3(1), 1-3.
Primbetov, A., Saidova, F., Yembergenova, U., & Primbetov, A. (2024). REAL TIME LOGO RECOGNITION USING YOLO ON ANDROID. Modern Science and Research, 3(1), 1-5.
Abbaz, P. (2024). REAL TIME LOGO RECOGNITION USING YOLO ON ANDROID. Eurasian Journal of Academic Research, 4(7S), 1094-1099.
Giyosjon, J., Anvarjon, N., & Abbaz, P. (2023). SAFEGUARDING THE DIGITAL FRONTIER: EXPLORING MODERN CYBERSECURITY METHODS. JOURNAL OF MULTIDISCIPLINARY BULLETIN, 6(4), 77-85.
ОБУЧИТЕ YOLOV8 НА ПОЛЬЗОВАТЕЛЬСКОМ НАБОРЕ ДАННЫХ Примбетов Аббаз,Саидова Фазилат,Нормуминов Анваржон, Примбетов Азиз, https://doi.org/10.5281/zenodo.8023689
DEVELOP AN APPLICATION THAT CONVERTS VIDEOS INTO SLIDES UTILIZING BACKGROUND ESTIMATION AND FRAME DIFFERENCING IN OPENCV Primbetov Abbaz, Abdusalomov Shaxbozbek, To‘lqinov Oybek, Rahmonova Mahbuba, Pardaboyeva Mohichexra. https://doi.org/10.5281/zenodo.13364871
LaValley, M. P. (2008). Logistic regression. Circulation, 117(18), 2395-2399.
Kleinbaum, D. G., Dietz, K., Gail, M., Klein, M., & Klein, M. (2002). Logistic regression (p. 536). New York: Springer-Verlag.
Vishwanathan, S. V. M., & Murty, M. N. (2002, May). SSVM: a simple SVM algorithm. In Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No. 02CH37290) (Vol. 3, pp. 2393-2398). IEEE.
[10] Jakkula, V. (2006). Tutorial on support vector machine (svm). School of EECS, Washington State University, 37(2.5), 3.
Guo, G., Wang, H., Bell, D., Bi, Y., & Greer, K. (2003). KNN model-based approach in classification. In On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences, CoopIS, DOA, and ODBASE 2003, Catania, Sicily, Italy, November 3-7, 2003. Proceedings (pp. 986-996). Springer Berlin Heidelberg.
Steinbach, M., & Tan, P. N. (2009). kNN: k-nearest neighbors. In The top ten algorithms in data mining (pp. 165-176). Chapman and Hall/CRC.
Song, Y. Y., & Ying, L. U. (2015). Decision tree methods: applications for classification and prediction. Shanghai archives of psychiatry, 27(2), 130.
Podgorelec, V., Kokol, P., Stiglic, B., & Rozman, I. (2002). Decision trees: an overview and their use in medicine. Journal of medical systems, 26, 445-463

