ENERGIYA SAMARADORLIGINI OSHIRISHDA SUN’IY INTELLEKTNING ROLI

Main Article Content

Аннотация:

Ushbu maqolada energiya samaradorligini oshirish jarayonida sun’iy intellekt (SI) texnologiyalarining o’rni va ahamiyati tahlil qilinadi. Zamonaviy energetika tizimlarida energiya iste’molini optimallashtirish, yo’qotishlarni kamaytirish hamda resurslarda chuqur oqilona foydalanish dolzarb masalalardan biri hisoblanadi.Maqolada sun’iy intellekt asosidagi algoritmlar,jumladan mashinaviy o’rganish, chuqur o’rganish va ma’lumotlarni tahlil qilish usullarining energiya ishlab chiqarish, uzatish va iste’mol qilish jarayonlarida qo’llanilishi yoritib beradi.Shuningdek, aqlli tarmoqlar (smart grid), binolarning energiya boshqaruvi tizimlari hamda sanoat korxonalarida energiya samaradorligini oshirishda SI texnologiyalarining amaliy imkoniyatlari ko’rib chiqiladi.Tadqiqot natijalari shuni ko’rsatadiki, sun’iy intellektdan foydalanish energiya tejamkorligini ta’minlash ekologik barqarorlikni oshirish va iqtisodiy samaradorlikka erishishda muhim omil hisoblanadi.

Article Details

Как цитировать:

O’rinboyeva , K., & Abdusalomova , M. . (2025). ENERGIYA SAMARADORLIGINI OSHIRISHDA SUN’IY INTELLEKTNING ROLI. Наука и инновация, 3(58), 77–79. извлечено от https://in-academy.uz/index.php/si/article/view/69399

Библиографические ссылки:

Russell S., Norvig P. Artificial Intelligence: A Modern Approach. — Pearson Education, 2021.

Goodfellow I., Bengio Y., Courville A. Deep Learning. — MIT Press, 2016.

Bishop C. M. Pattern Recognition and Machine Learning. — Springer, 2006.

Zhang Y., Wang J. Artificial Intelligence in Energy Systems. — Springer, 2020.

Li R., Wang Z., Gu C. “Artificial intelligence applications in smart grids” // Energy Reports, 2022.

Mohsenian-Rad H. Smart Grid Optimization. — Cambridge University Press, 2017.

Lund H. et al. “Smart energy systems and energy efficiency” // Energy, 2019.

Ahmad T., Chen H. “Artificial intelligence for energy management” // Renewable and Sustainable Energy Reviews, 2020.

Deb C., Schlueter A. “Review of data-driven energy efficiency methods” // Energy and Buildings, 2018.

Wei T., Zhu Q. “Deep reinforcement learning for energy efficiency” // IEEE Transactions on Smart Grid, 2019.

Sun Q., Ge X. “AI-based energy consumption forecasting” // Applied Energy, 2021.

ISO 50001:2018 — Energy management systems — Requirements with guidance for use.

International Energy Agency (IEA). Digitalization and Energy. — Paris, 2017.

World Economic Forum. Artificial Intelligence and Energy. — Geneva, 2020.

Gandomi A., Haider M. “Beyond the hype: AI in energy systems” // Energy AI, 2021.

Zhao H., Magoulès F. “Machine learning for building energy performance” // Renewable Energy, 2019.

Yang T. et al. “AI-driven optimization in industrial energy systems” // Journal of Cleaner Production, 2022.

Landau L. D., Lifshitz E. M. Statistical Physics. — Pergamon Press, 1980.

Bunn D. Forecasting Energy Demand. — Springer, 2018.

Haykin S. Neural Networks and Learning Machines. — Pearson, 2009.