MOMENT MEXANIZMINING MATEMATIK ASOSLARI VA ADAM TURIDAGI ADAPTIV OPTIMIZATORLARDA QOʻLLANISH SAMARADORLIGINI TAHLIL QILISH
Main Article Content
Аннотация:
Ushbu tezisda mashinaviy oʻrganish va sunʼiy intellekt modellarini oʻqitishda qoʻllaniladigan optimallashtirish algoritmlarining muhim jihatlaridan biri boʻlgan moment mexanizmining matematik asoslari va uning Adam turidagi adaptiv optimizatorlarda qoʻllanish samaradorligi tahlil qilinadi. Natijalar shuni koʻrsatadiki, moment mexanizmi va adaptiv optimallashtirish yondashuvlari zamonaviy chuqur oʻrganish modellarini samarali oʻqitishda muhim ahamiyat kasb etadi.
Article Details
Как цитировать:
Библиографические ссылки:
Kingma D. P., Ba J. L. Adam: A Method for Stochastic Optimization // Proceedings of the 3rd International Conference on Learning Representations (ICLR). – San Diego, 2015. – 15 p.
Goodfellow I., Bengio Y., Courville A. Deep Learning. – Cambridge: MIT Press, 2016. – 775 p.
Ruder S. An overview of gradient descent optimization algorithms // arXiv preprint arXiv:1609.04747. – 2016. – 23 p.
Bottou L., Curtis F. E., Nocedal J. Optimization Methods for Large-Scale Machine Learning // SIAM Review. – 2018. – Vol. 60, No. 2. – P. 223–311.
Duchi J., Hazan E., Singer Y. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization // Journal of Machine Learning Research. – 2011. – Vol. 12. – P. 2121–2159.
Reddi S. J., Kale S., Kumar S. On the Convergence of Adam and Beyond // Proceedings of the International Conference on Learning Representations (ICLR). – Vancouver, 2018. – 19 p.
Nesterov Yu. Introductory Lectures on Convex Optimization: A Basic Course. – Boston: Springer, 2004. – 236 p.
Bishop C. M. Pattern Recognition and Machine Learning. – New York: Springer, 2006. – 738 p.
Polyak B. T. Introduction to Optimization. – New York: Optimization Software Inc., 1987. – 188 p.
Sutton R. S., Barto A. G. Reinforcement Learning: An Introduction. – 2nd ed. – Cambridge: MIT Press, 2018. – 552 p.
