TIBBIY TASVIRLARNI (RENTGEN, MRT) DATA MINING YORDAMIDA TAHLIL QILISH
Main Article Content
Аннотация:
Zamonaviy tibbiyotda diagnostika jarayonlarini avtomatlashtirishva aniqlash sifatini oshirish dolzarb muammo hisoblanadi. Ushbu tezisda tibbiy tasvirlarni, xususan, rentgen va magnit-rezonans tomografiya (MRT) natijalarini Data Mining texnologiyalari yordamida tahlil qilish usullari ko'rib chiqiladi. Ma'lumotlar qazib olish texnologiyalari yordamida kasalliklarni erta bosqichda aniqlash, diagnostika aniqliqini oshirish va shifokorlarning qaror qabul qilish jarayonini qo'llab-quvvatlash imkoniyatlari tahlil etilgan.
Article Details
Как цитировать:
Библиографические ссылки:
Goodfellow, I., Bengio, Y., & Courville, A. Deep Learning. MIT Press, 2016.
Murphy, K. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.
Razzak, M. I., Naz, S., & Zaib, A. "Deep Learning for Medical Image Processing: Overview, Challenges and Future." Classification in BioApps, Springer, 2018.
Litjens, G., et al. "A survey on deep learning in medical image analysis." Medical Image Analysis, 2017.
Esteva, A., et al. "Dermatologist-level classification of skin cancer with deep neural networks." Nature, 2017.
Ronneberger, O., Fischer, P., & Brox, T. "U-Net: Convolutional Networks for Biomedical Image Segmentation." MICCAI, 2015.
He, K., Zhang, X., Ren, S., & Sun, J. "Deep Residual Learning for Image Recognition (ResNet)." CVPR, 2016.
Simonyan, K., & Zisserman, A. "Very Deep Convolutional Networks for Large-Scale Image Recognition (VGG)." arXiv preprint, 2014.
World Health Organization (WHO). Radiological Imaging Statistics and Global Health Report, 2021.
Zhou, S. K., Rueckert, D., & Fichtinger, G. (Eds.) Handbook of Medical Image Computing and Computer Assisted Intervention. Academic Press, 2020.
IBM Watson Health Reports. AI in Medical Imaging: Clinical Applications and Case Studies, 2020.
Google Health Research Team. "AI for Lung Cancer Screening: Model Performance Report", 2019.
Shin, H. C., et al. "Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning." IEEE Transactions on Medical Imaging, 2016.
Zebra Medical Vision. AI-Based Radiology Solutions: Technical Documentation, 2020.
Pedrini, H., & Schwartz, W. R. Image Processing: Algorithms and Applications. Springer, 2017.
