XUSUSIY INTEGRAL TENGLAMALAR SISTEMASINI YECHISH

Main Article Content

Abstract:

Mazkur maqolada xususiy integral tenglamalar sistemasining matematik mohiyati hamda ularni yechish masalalari tahlil qilinadi. Tadqiqot davomida Fredholm va Volterra tipidagi ikkinchi tur integral tenglamalar sistemalari umumiy ko‘rinishda qaralib, ularning yechimga ega bo‘lish shartlari va asosiy xossalari yoritiladi. Integral yadroning tuzilishiga alohida e’tibor qaratilib, ajraluvchi (degeneratsiyalangan) yadrolarga ega bo‘lgan sistemalarni yechishning samarali usullari ko‘rsatib beriladi. Olingan natijalar integral tenglamalar nazariyasini o‘rganishda hamda matematik modellashtirishga oid amaliy masalalarni yechishda muhim nazariy va amaliy ahamiyatga ega bo‘lib, tadqiqot natijalari oliy ta’lim muassasalarida matematik analiz va funksional analiz fanlarini o‘qitishda metodik manba sifatida foydalanilishi mumkin.

Article Details

How to Cite:

Saidova , D. (2026). XUSUSIY INTEGRAL TENGLAMALAR SISTEMASINI YECHISH. Young Scientists, 4(6), 119–122. Retrieved from https://in-academy.uz/index.php/yo/article/view/72958

References:

Tricomi F.G. Integral Equations. — New York: Interscience Publishers, 1957.

Kress R. Linear Integral Equations. — 3rd ed. — New York: Springer, 2014.

Gripenberg G., Londen S.O., Staffans O. Volterra Integral and Functional Equations. — Cambridge: Cambridge University Press, 1990.

Hackbusch W. Integral Equations: Theory and Numerical Treatment. — Basel: Birkhäuser, 1995.

Закирова З. Вклад нематериальной культуры в развитие музыкального искусства //Общество и инновации. – 2024. – Т. 5. – №. 4/S. – С. 128-133.

Atkinson K.E. The Numerical Solution of Integral Equations of the Second Kind. — Cambridge: Cambridge University Press, 1997.

Kantorovich L.V., Akilov G.P. Functional Analysis. — Oxford: Pergamon Press, 1982.

Kreyszig E. Introductory Functional Analysis with Applications. — New York: Wiley, 1978.

Polyanin A.D., Manzhirov A.V. Handbook of Integral Equations. — Boca Raton: CRC Press, 2008.