MOLIYAVIY FIRIBGARLIKNI ANIQLASHDA ZAMONAVIY TEXNOLOGIYALARDAN FOYDALANISH

Main Article Content

Abstract:

Moliyaviy firibgarlik zamonaviy raqamli iqtisodiyotda banklar, moliya institutlari va foydalanuvchilar uchun jiddiy muammolardan biri hisoblanadi. Ushbu maqolada moliyaviy firibgarlikni aniqlashda zamonaviy axborot texnologiyalari, xususan ma’lumotlarni qayta ishlash, mashina o‘rganishi, sun’iy intellekt hamda data analytics texnologiyalarining o‘rni yoritilgan. Tranzaksion ma’lumotlarni real vaqt rejimida tahlil qilish orqali shubhali operatsiyalarni aniqlash, risklarni baholash va firibgarlik holatlarining oldini olish imkoniyatlari ko‘rib chiqilgan. Zamonaviy algoritmlar yordamida katta hajmdagi moliyaviy ma’lumotlarni samarali qayta ishlash va qaror qabul qilish jarayonlarini optimallashtirish masalalari tahlil qilingan.

Article Details

How to Cite:

Matraimov , I. ., & Qosimov , S. . (2025). MOLIYAVIY FIRIBGARLIKNI ANIQLASHDA ZAMONAVIY TEXNOLOGIYALARDAN FOYDALANISH. Science and Innovation, 3(60), 31–34. Retrieved from https://in-academy.uz/index.php/si/article/view/69864

References:

Dal Pozzolo A., et al. Adversarial drift detection for fraud detection. IEEE, 2018.

Bolton R., Hand D. Statistical fraud detection: A review. Statistical Science, 2002.

Bahnsen A., et al. Cost-sensitive decision trees for fraud detection. Expert Systems, 2015.

Ngai E., et al. The application of data mining techniques in financial fraud detection. Decision Support Systems, 2011.

Carcillo F., et al. Scarff: Fraud detection with adaptive learning. Information Sciences, 2021.

Kaggle. Credit Card Fraud Detection Dataset.

OECD. Financial fraud and risk management. 2020.

Chen C., et al. Machine learning for financial fraud detection. IEEE Access, 2018.

Phua C., et al. A comprehensive survey of data mining-based fraud detection. arXiv, 2010.

Abdallah A., et al. Fraud detection system: A survey. Journal of Network and Computer Applications, 2016.